首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ang PK  Li A  Jaiswal M  Wang Y  Hou HW  Thong JT  Lim CT  Loh KP 《Nano letters》2011,11(12):5240-5246
The electronic properties of graphene are strongly influenced by electrostatic forces arising from long-range charge scatterers and by changes in the local dielectric environment. This makes graphene extremely sensitive to the surface charge density of cells interfacing with it. Here, we developed a graphene transistor array integrated with microfluidic flow cytometry for the "flow-catch-release" sensing of malaria-infected red blood cells at the single-cell level. Malaria-infected red blood cells induce highly sensitive capacitively coupled changes in the conductivity of graphene. Together with the characteristic conductance dwell times, specific microscopic information about the disease state can be obtained.  相似文献   

2.
Tunable graphene single electron transistor   总被引:1,自引:0,他引:1  
We report electronic transport experiments on a graphene single electron transistor. The device consists of a graphene island connected to source and drain electrodes via two narrow graphene constrictions. It is electrostatically tunable by three lateral graphene gates and an additional back gate. The tunneling coupling is a strongly nonmonotonic function of gate voltage indicating the presence of localized states in the barriers. We investigate energy scales for the tunneling gap, the resonances in the constrictions, and for the Coulomb blockade resonances. From Coulomb diamond measurements in different device configurations (i.e., barrier configurations) we extract a charging energy of approximately 3.4 meV and estimate a characteristic energy scale for the constriction resonances of approximately 10 meV.  相似文献   

3.
Chemical vapor deposited (CVD) graphene is nanopatterned using a spherical block copolymer etch mask. The use of spherical rather than cylindrical block copolymers allows homogeneous patterning of cm-scale areas without any substrate surface treatment. Raman spectroscopy was used to study the con- trolled generation of point defects in the graphene lattice with increasing etching time, confirming that alongside the nanomesh patterning, the nanopatterned CVD graphene presents a high defect density between the mesh holes. The nanopatterned samples showed sensitivities for NO2 of more than one order of magnitude higher than for non-patterned graphene. NO2 concentrations as low as 300 ppt were detected with an ultimate detection limit of tens of ppt. This is the smallest value reported so far for non-UV illuminated graphene chemiresistive NO2 gas sensors. The dramatic improvement in the gas sensitivity is believed to be due to the high adsorption site density, thanks to the combination of edge sites and point defect sites. This work opens the possibility of large area fabrication of nanopatterned graphene with extremely high densities of adsorption sites for sensing applications.  相似文献   

4.
Metallic nanostructures possess plasmonic resonances that spatially confine light on the nanometre scale. In the ultimate limit of a single nanostructure, the electromagnetic field can be strongly concentrated in a volume of only a few hundred nm(3) or less. This optical nanofocus is ideal for plasmonic sensing. Any object that is brought into this single spot will influence the optical nanostructure resonance with its dielectric properties. Here, we demonstrate antenna-enhanced hydrogen sensing at the single-particle level. We place a single palladium nanoparticle near the tip region of a gold nanoantenna and detect the changing optical properties of the system on hydrogen exposure by dark-field microscopy. Our method avoids any inhomogeneous broadening and statistical effects that would occur in sensors based on nanoparticle ensembles. Our concept paves the road towards the observation of single catalytic processes in nanoreactors and biosensing on the single-molecule level.  相似文献   

5.
Yang  Lunwei  Xiao  Wei  Wang  Jianwei  Li  Xiaowu  Wang  Ligen 《Journal of Materials Science》2021,56(21):12256-12269
Journal of Materials Science - The formaldehyde gas sensing properties of transition metal-doped graphene have been systematically investigated by first-principles calculations. The optimized...  相似文献   

6.
7.
Zinc oxide nanowires are configured as n-channel FETs. These transistors are implemented as chemical sensors for detection of various chemical gases. It is observed that the nanowire conductance is reduced when it is exposed to oxygen, nitrogen dioxide, ammonia gases at room temperature. Its ammonia sensing behavior is observed to switch from oxidizing to reducing when temperature is increased to 500 K. This effect is mainly attributed to the temperature dependent Fermi level shift. In addition, carbon monoxide is found to increase the nanowire conductance in the presence of oxygen. Furthermore, the detection sensitivity dependence on the nanowire radius is presented.  相似文献   

8.
This paper presents the first report of the successful ball-milling exfoliation of graphitic filaments (GANF~ carbon nanofibres) into single layer graphene. The addition of small amounts of solvent during the milling process makes it possible to enhance the intercalation of the exfoliating agent (melamine) between the graphene layers, thus promoting exceptional exfoliation. Advantage has also been taken of the fact that the Hansen solubility parameters of graphene are different from those of carbon fibres, which allows single and few-layer graphene to be suspended in a particular solvent, thus discriminating them from poorly exfoliated carbon nanofibres.  相似文献   

9.
In pristine graphene ribbons, disruption of the aromatic bond network results in depopulation of covalent orbitals and tends to elongate the edge, with an effective force of f e ~ 2 eV/Å (larger for armchair edges than for zigzag edges, according to calculations). This force can have quite striking macroscopic manifestations in the case of narrow ribbons, as it favors their spontaneous twisting, resulting in the parallel edges forming a double helix, resembling DNA, with a pitch t of about 15–20 lattice parameters. Through atomistic simulations, we investigate how the torsion τ ~ 1/λ t decreases with the width of the ribbon, and observe its bifurcation: the twist of wider ribbons abruptly vanishes and instead the corrugation localizes near the edges. The length-scale (λ e) of the emerging sinusoidal “frill” at the edge is fully determined by the intrinsic parameters of graphene, namely its bending stiffness D=1.5 eV and the edge force f e with λ eD/f e. Analysis reveals other warping configurations and suggests their sensitivity to the chemical passivation of the edges, leading to possible applications in sensors.   相似文献   

10.
石墨烯独特的原子结构赋予其电学、热学、力学等方面的优异性能,在诸多领域具有广泛的应用。氧化石墨烯不仅具有石墨烯结构特点,而且具有大量的含氧官能团,增强了对气体的吸附能力,更适合应用于气敏传感器。通过改进的Hummer方法制备了片状多层氧化石墨烯,并对不同浓度的NH3进行敏感特性测试。结果表明氧化石墨烯对NH3具有良好的响应,在(1.5~3.5)×10-4范围内呈线性关系。  相似文献   

11.
A Au-CeO(2) nanocomposite film has been investigated as a potential sensing element for high-temperature plasmonic sensing of H(2), CO, and NO(2) in an oxygen containing environment. The CeO(2) thin film was deposited by molecular beam epitaxy (MBE), and Au was implanted into the as-grown film at an elevated temperature followed by high temperature annealing to form well-defined Au nanoclusters. The Au-CeO(2) nanocomposite film was characterized by X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). For the gas sensing experiments, separate exposures to varying concentrations of H(2), CO, and NO(2) were performed at a temperature of 500 °C in oxygen backgrounds of 5.0, 10, and ~21% O(2). Changes in the localized surface plasmon resonance (LSPR) absorption peak were monitored during gas exposures and are believed to be the result of oxidation-reduction processes that fill or create oxygen vacancies in the CeO(2). This process affects the LSPR peak position either by charge exchange with the Au nanoparticles (AuNPs) or by changes in the dielectric constant surrounding the particles. Spectral multivariate analysis was used to gauge the inherent selectivity of the film between the separate analytes. From principal component analysis (PCA), unique and identifiable responses were seen for each of the analytes. Linear discriminant analysis (LDA) was also used and showed separation between analytes as well as trends in gas concentration. Results indicate that the Au-CeO(2) thin film is selective to O(2), H(2), CO, and NO(2) in separate exposures. This, combined with the observed stability over long exposure periods, shows the Au-CeO(2) film has good potential as an optical sensing element for harsh environmental conditions.  相似文献   

12.
13.
14.
Severin N  Dorn M  Kalachev A  Rabe JP 《Nano letters》2011,11(6):2436-2439
The electronic properties of graphenes depend sensitively on their deformation, and therefore strain engineered graphene electronics is envisioned. In order to deform graphenes locally, we have mechanically exfoliated single and few layer graphenes onto atomically flat mica surfaces covered with isolated double stranded plasmid DNA rings. Using scanning force microscopy in both contact and intermittent contact modes, we find that the graphenes replicate the topography of the underlying DNA with high precision. The availability of macromolecules of different topologies, e.g., programmable DNA patterns, render this approach promising for new graphene based device designs. On the other hand, the encapsulation of single macromolecules offers new prospects for analytical scanning probe microscopy techniques.  相似文献   

15.
We studied the photodesorption behavior of pristine and nitric acid (HNO(3)) treated graphene layers fabricated by chemical vapor deposition (CVD). The decrease in electrical conductivity and a negative shift of the Dirac point in graphene layers illuminated with ultraviolet light are caused by molecular photodesorption, while the UV illumination does not degrade the carrier mobility of graphene layers. When graphene layers were treated with concentrated HNO(3), the photodesorption-induced current decrease became less significant than for pristine graphene layers. We suggest this is due to the passivation of oxygen-bearing functionalities to CVD grown graphene structural defects by HNO(3) functionalization, which prevents the further absorption of gas molecules. Our results provide a new strategy for stabilizing the electrical performance of CVD grown large-area graphene layers for applications ranging from nanoelectronics to optoelectronics.  相似文献   

16.
Functionalized graphene has been extensively studied with the aim of tailoring properties for gas sensors, superconductors, supercapacitors, nanoelectronics, and spintronics. A bottleneck is the capability to control the carrier type and density by doping. We demonstrate that a two-step process is an efficient way to dope graphene: create vacancies by high-energy atom/ion bombardment and fill these vacancies with desired dopants. Different elements (Pt, Co, and In) have been successfully doped in the single-atom form. The high binding energy of the metal-vacancy complex ensures its stability and is consistent with in situ observation by an aberration-corrected and monochromated transmission electron microscope.  相似文献   

17.
The performance limits of a multilayer graphene nanoribbon (GNR) field-effect transistor (FET) are assessed and compared with those of a monolayer GNRFET and a carbon nanotube (CNT) FET. The results show that with a thin high dielectric constant (high-κ) gate insulator and reduced interlayer coupling, a multilayer GNRFET can significantly outperform its CNT counterpart with a similar gate and bandgap in terms of the ballistic on-current. In the presence of optical phonon scattering, which has a short mean free path in the graphene-derived nanostructures, the advantage of the multilayer GNRFET is even more significant. Simulation results indicate that multilayer GNRs with incommensurate non-AB stacking and weak interlayer coupling are the best candidates for high-performance GNRFETs.   相似文献   

18.
Li JJ  Zhu KD 《Nanotechnology》2011,22(5):055202
Laser and strong coupling can coexist in a single quantum dot (QD) coupled to a photonic crystal nanocavity. This provides an important clue towards the realization of a quantum optical transistor. Using experimentally realistic parameters, in this work, theoretical analysis shows that such a quantum optical transistor can be switched on or off by turning on or off the pump laser, which corresponds to attenuation or amplification of the probe laser, respectively. Furthermore, based on this quantum optical transistor, an all-optical measurement of the vacuum Rabi splitting is also presented. The idea of associating a quantum optical transistor with this coupled QD-nanocavity system may achieve images of light controlling light in all-optical logic circuits and quantum computers.  相似文献   

19.
Jeon KJ  Jeun M  Lee E  Lee JM  Lee KI  von Allmen P  Lee W 《Nanotechnology》2008,19(49):495501
We present the hydrogen sensing performance of individual Pd nanowires grown by electrodeposition into nanochannels of anodized aluminum oxide (AAO) templates investigated as a function of the nanowire diameter. Four-terminal devices based on individual Pd nanowires were found to successfully detect hydrogen gas (H(2)). Our experimental results show that the H(2) sensing sensitivity increases and the response time decreases with decreasing diameter of Pd nanowires with d = 400, 200, 80 and 20?nm, due to the high surface-to-volume ratio and short diffusion paths, respectively. This is in qualitatively good agreement with simulated results obtained from a theoretical model based on a combination of the rate equation and diffusion equation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号