首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The initial shell solidification of liquid steel in the mold has significant influence on both surface and internal quality of the final slab, and it is mainly determined by the high transient high temperature thermodynamics occurring in the mold. This study investigated the effects of casting parameters like casting temperature, mold oscillation frequency, and stroke on the initial solidification of a Sn-Pb alloy through the use of a mold simulator to allow the clear understanding of the inter-relationship between irregular shell solidification, heat transfer, negative strip time (NST), and casting conditions. Results suggested that the shell surface oscillation marks (OMs) are strongly depending upon the fluctuations of meniscus responding temperatures and heat flux. An abrupt sudden fluctuation of high frequency temperature and heat flux at the meniscus during the NST would deteriorate the shell surface and leads to deep OMs. The fluctuations of responding temperature and heat flux are determined by the NST, meniscus solidification, and oil infiltration, which in turn are influenced by casting conditions, like casting temperature, oscillation frequency, stroke, etc.  相似文献   

2.
Thermal behavior of the solidifying shell in continuous casting mold is very important to final steel products.In the present work,one two-dimension transient thermal-mechanical finite element model was developed to simulate the thermal behavior of peritectic steel solidifying in slab continuous casting mold by using the sequential coupling method.In this model,the steel physical properties at high temperature was gotten from the micro-segregation model withδ/γtransformation in mushy zone,and the heat flux was obtained according to the displacement between the surface of solidifying shell and the hot face of mold as solidification contraction,the liquid-solid structure and distribution of mold flux,and the temperature distribution of slab surface and mold hot face,in addition,the rate-dependent elastic-viscoplastic constitutive equation was applied to account for the evolution of shell stress in the mold.With this model,the variation characteristics of surface temperature,heat flux, and growth of the solidifying shell corner,as well as the thickness distribution of the liquid flux,solidified flux,air gap and the corresponding thermal resistance were described.  相似文献   

3.
从分析高拉速包晶钢板坯连铸结晶器内凝固传热行为特征入手,首先阐明拉速对结晶器内的界面热阻、凝固坯壳的温度与应力分布的影响规律,研究发现拉速超过1.6 m·min?1时,界面热阻明显增加,拉速由1.4 m·min?1提升至1.6 m·min?1和1.8m·min?1时,出结晶器坯壳厚度相应减少约10%,其发生漏钢的危险不断增加;在此基础上,阐述了结晶器的内腔结构、保护渣、振动与液面控制等控制结晶器内坯壳凝固均匀性的相关技术。要实现高速连铸,首要应考虑结晶器内腔结构的优化设计,使其能更好地迎合凝固坯壳的生长,研制适合包晶钢等凝固特点的专用连铸保护渣至关重要,铸坯鼓肚控制也是保障高拉速液面稳定的关键。   相似文献   

4.
5.
 The metallurgical phenomena occurring in the continuous casting mold have a significant influence on the performance and the quality of steel product. The multiphase flow phenomena of molten steel, steel/slag interface and gas bubbles in the slab continuous casting mold were described by numerical simulation, and the effect of electromagnetic brake (EMBR) and argon gas blowing on the process were investigated. The relationship between wavy fluctuation height near meniscus and the level fluctuation index F, which reflects the situation of mold flux entrapment, was clarified. Moreover, based on a microsegregation model of solute elements in mushy zone with δ/γ transformation and a thermo-mechanical coupling finite element model of shell solidification, the thermal and mechanical behaviors of solidifying shell including the dynamic distribution laws of air gap and mold flux, temperature and stress of shell in slab continuous casting mold were described.  相似文献   

6.
基于Navier-Stokes动量方程和湍流低雷诺数k-ε方程,综合考虑能量守恒和钢液凝固与糊状区对流动过程的影响,建立了描述结晶器内钢液流动、传热及凝固过程的三维耦合数学模型.以实测温度和结晶器反问题模型计算出的热流为边界条件,模拟计算了结晶器内钢水的流动、传热和凝固行为.钢液流动决定结晶器内的温度和热流分布,铸坯凝固受钢液流动和结晶器热流双重因素的影响.建立的模型以及由此得到的铸坯凝固非均匀特征可为进一步考察浇铸过程中纵裂和其他表面缺陷提供借鉴和参考.   相似文献   

7.
With the considerations of the behaviors of shell deformation, mold flux film and air gap dynamic distribution in shell/mold gap, a two dimensional slice-travel transient thermo-mechanical coupled model of simulation shell solidification in wide and thick slab continuous casting mold was developed by using the commercial program ANSYS. The evolutions of strand-mold system thermal behaviors, including the air gap formation and the mold flux film dynamical distribution in shell/mold gap and shell temperature field, and the evolutions of shell deformation and stress distribution of peritectic steel solidified in a 2120 mm wide and 266 mm thick slab continuous casting mold were analyzed. The results show that the air gap formation and the thick mold flux film distribution mainly concentrate in the regions 0–21 mm and 0–7 mm, 0–120 mm and 0–100 mm off the shell wide and narrow faces corners, and thus the hot spots are given rise to form in the regions 15–55 mm and 15–50 mm off the shell wide and narrow face corners. The shell server deformation occurs in the off-corners in the middle and lower parts of the mold. The stress evolution in shell surface is tensile stress, while that in shell solidification front is compressive stress.  相似文献   

8.
This article investigates the thermal distortion of a funnel mold for continuous casting of thin slabs and explores the implications on taper and solidification of the steel shell. The three-dimensional mold temperatures are calculated using shell-mold heat flux and cooling water profiles that were calibrated with plant measurements. The thermal stresses and distorted shape of the mold are calculated with a detailed finite-element model of a symmetric fourth of the entire mold and waterbox assembly, and they are validated with plant thermocouple data and measurements of the wear of the narrow-face copper mold plates. The narrow-face mold distorts into the typical parabolic arc, and the wide face distorts into a ??W?? shape owing to the large variation in bolt stiffnesses. The thermal expansion of the wide face works against the applied narrow-face taper and funnel effects, so the effect of thermal distortion must be considered to accurately predict the ideal mold taper.  相似文献   

9.
The importance of initial solidification of molten steel in the mold has been widely acknowledged. However, very few studies have been effectively developed because of the high transient nature of thermodynamics and fluid flow in the upper mold. Based on the recently developed mold simulator technology, a novel technique has been successfully developed to study the initial solidification behavior of Sn-Pb alloy, which gives rise to the clear understanding of the interrelationship between complex meniscus heat transfer, casting surface oscillation marks (OM), and mold hot-surface responding temperatures. The results suggested that the variations of the responding temperatures and heat flux at meniscus may be associated with the movement of mold in/out of the bath, the infiltration of silicon oil, and the latent heat release due to the solidification of meniscus during negative strip time (NST). The presence of positive peaks in the derivative of the heat flux are corresponding to each of the OM during NST, which suggests the significant increase of heat flux during the formation of OM. These could be explained as the meniscus is deformed and gets closer to the coldest mold at the beginning of NST, such that the liquid meniscus that gives rise to the increase of heat flux would be solidified. With the enhancement of oil infiltration from the mid-NST to end-NST, the thermal resistance between the solidified meniscus and mold decreases; therefore, the shell continues to grow, and the resulting heat-transfer and mold temperatures also continue to increase.  相似文献   

10.
Surface quality problems in continuous cast steel are greatly affected by heat transfer across the interfacial layers in the gap between the solidifying steel shell and the mold. An experimental apparatus has been constructed to measure temperatures in the steel, mold flux layers, and copper under conditions approximating those in continuous casting. The flux solidified in multiple layers similar to those observed from continuous casting molds and contained many gas bubbles. Flux conductivities average about 1.0 W/m·K and appear to evolve with time. Contact resistances at both interfaces are significant and average about 0.0015 m2·K/W. Flux crystallization appears to be the only significant effect of flux composition. The one glassy flux tested had much greater thermal conductivities, presumably due to radiation transport. Temperature and gap thickness had a negligible effect on the properties. These properties depend on the model used to extract them. They are being implemented into a mathematical model to simulate heat transfer in the mold, interface, and solidifying shell of a continuous slab-casting machine.  相似文献   

11.
通过测定结晶器中钢液凝固坯壳厚度,研究了结晶器中钢液凝固系数变化情况,结合对漏钢时坯壳的解剖分析,评价了现有的铸机结晶器的综合冷却能力,为铸机高拉速生产提供了重要依据。  相似文献   

12.
Two principal methods are used to investigate the heat transfer in the continuous casting mold. The direct way is to measure cooling water temperatures, mold wall temperatures, strand temperatures and shell thickness in actual operation, and then deduce from these data the correlations for heat flux densities. The other way is to investigate the “unit operations” of heat transfer theoretically or experimentally in the laboratory, viz. heat transfer through a layer of casting flux or of gas, and heat transfer in a copper wall cooled on one side by water. The results obtained in this approach can then be used to explain the data determined with the direct method and to optimize the heat transfer behaviour of the mold in the machine. In the first part of this paper some unit operations are discussed and engineering formulae are given for computation of the heat resistances of the gap and the copper/water system. In the second part of the paper the available operational data on heat flux density are analysed. Algorithms are presented for computation of local and average heat flux density as functions of casting speed, carbon content of the steel and composition of the casting flux. Finally, values of shell thickness are computed with the correlation for heat flux density and are compared with the measured data.  相似文献   

13.
Heat-transfer and solidification model of continuous slab casting: CON1D   总被引:2,自引:0,他引:2  
A simple, but comprehensive model of heat transfer and solidification of the continuous casting of steel slabs is described, including phenomena in the mold and spray regions. The model includes a one-dimensional (1-D) transient finite-difference calculation of heat conduction within the solidifying steel shell coupled with two-dimensional (2-D) steady-state heat conduction within the mold wall. The model features a detailed treatment of the interfacial gap between the shell and mold, including mass and momentum balances on the solid and liquid interfacial slag layers, and the effect of oscillation marks. The model predicts the shell thickness, temperature distributions in the mold and shell, thickness of the resolidified and liquid powder layers, heat-flux profiles down the wide and narrow faces, mold water temperature rise, ideal taper of the mold walls, and other related phenomena. The important effect of the nonuniform distribution of superheat is incorporated using the results from previous three-dimensional (3-D) turbulent fluid-flow calculations within the liquid pool. The FORTRAN program CONID has a user-friendly interface and executes in less than 1 minute on a personal computer. Calibration of the model with several different experimental measurements on operating slab casters is presented along with several example applications. In particular, the model demonstrates that the increase in heat flux throughout the mold at higher casting speeds is caused by two combined effects: a thinner interfacial gap near the top of the mold and a thinner shell toward the bottom. This modeling tool can be applied to a wide range of practical problems in continuous casters.  相似文献   

14.
Thermal–mechanical analysis of solidification is important to understand crack formation, shape problems, and other aspects of casting processes. This work investigates the effect of grade on thermal–mechanical behavior during initial solidification of steels during continuous casting of a wide strand. The employed finite element model includes non-linear temperature-, phase-, and carbon content-dependent elastic–viscoplastic constitutive equations. The model is verified using an analytical solution, and a mesh convergence study is performed. Four steel grades are simulated for 30 seconds of casting without friction: ultra-low-carbon, low-carbon, peritectic, and high-carbon steel. All grades show the same general behavior. Initially, rapid cooling causes tensile stress and inelastic strain near the surface of the shell, with slight complementary compression beneath the surface, especially with lower carbon content. As the cooling rate decreases with time, the surface quickly reverses into compression, with a tensile region developing toward the solidification front. Higher stress and inelastic strain are generated in the high-carbon steel, because it contains more high-strength austenite. Stress in the δ-ferrite phase near the solidification front is always very small, owing to the low strength of this phase. This modeling methodology is a step toward designing better mold taper profiles for continuous casting of different steels.  相似文献   

15.
结晶器内连铸坯的热和应力状态数值模拟   总被引:1,自引:0,他引:1  
针对碳钢在连铸结晶器内的凝固过程,考虑铸坯和结晶器内的接触状态,利用ANSYS软件建立了完全热力耦合的三维稳态有限元模型,模拟出结晶器区域内的热和力学状态,包括铸坯应力场、气隙分布规律以及整个结晶器内钢液温度分布等。结果显示,铸坯出结晶器时坯壳外层处于压缩状态、内层处于拉伸状态,内外表面应力分别为279、311 MPa,凝固前沿处应力为3 MPa左右,处于材料的极限强度范围,有产生裂纹的可能。锥度结晶器有利于钢液凝固换热,采用0.7%/m的倒锥度设计后,气隙量较无锥度结晶器最多减少了42%。  相似文献   

16.
Steady-state finite-element models have been formulated to investigate the coupled fluid flow and thermal behavior of the top-surface flux layers in continuous casting of steel slabs. The three-dimensional (3-D) FIDAP model includes the shear stresses imposed on the flux/steel interface by flow velocities calculated in the molten steel pool. It also includes different temperature-dependent powder properties for solidification and melting. Good agreement between the 3-D model and experimental measurements was obtained. The shear forces, imposed by the steel surface motion toward the submerged entry nozzle (SEN), create a large recirculation zone in the liquid flux pool. Its depth increases with increasing casting speed, increasing liquid flux conductivity, and decreasing flux viscosity. For typical conditions, this zone contains almost 4 kg of flux, which contributes to an average residence time of about 2 minutes. Additionally, because the shear forces produced by the narrowface consumption and the steel flow oppose each other, the flow in the liquid flux layer separates at a location centered 200 mm from the narrowface wall. This flow separation depletes the liquid flux pool at this location and may contribute to generically poor feeding of the mold-strand gap there. As a further consequence, a relatively cold spot develops at the wideface mold wall near the separation point. This nonuniformity in the temperature distribution may result in nonuniform heat removal, and possibly nonuniform initial shell growth in the meniscus region along the wideface off-corner region. In this way, potential steel quality problems may be linked to flow in the liquid flux pool.  相似文献   

17.
以低碳钢和中碳钢为研究对象,围绕不同连铸工艺参数对方坯初始凝固行为的影响,利用CA-FE耦合模型模拟实际连铸过程结晶器内方坯的初始凝固行为,考察拉速和过热度对方坯出结晶器坯壳厚度的影响,对比二者出结晶器横截面枝晶微观形貌.研究表明:过热度和拉速增加均能使出结晶器坯壳厚度下降,而拉速的影响更为显著.不同钢种在相同条件下出结晶器坯壳厚度下降梯度不同.过热度越低柱状晶越致密细小,利于提高连铸坯质量,拉速对柱状晶的影响相对较小.由于出结晶器坯壳安全厚度限制,过热度取15℃,低碳钢拉速不能超过2.2 m·min-1,中碳钢拉速不能超过2.5 m·min-1,据此针对不同钢种设计不同拉速可提高连铸效率.同时,模型结果显示低碳钢出结晶器时刻柱状晶更为发达.   相似文献   

18.
A coupled finite-element model, CON2D, has been developed to simulate temperature, stress, and shape development during the continuous casting of steel, both in and below the mold. The model simulates a transverse section of the strand in generalized plane strain as it moves down at the casting speed. It includes the effects of heat conduction, solidification, nonuniform superheat dissipation due to turbulent fluid flow, mutual dependence of the heat transfer and shrinkage on the size of the interfacial gap, the taper of the mold wall, and the thermal distortion of the mold. The stress model features an elastic-viscoplastic creep constitutive equation that accounts for the different responses of the liquid, semisolid, delta-ferrite, and austenite phases. Functions depending on temperature and composition are employed for properties such as thermal linear expansion. A contact algorithm is used to prevent penetration of the shell into the mold wall due to the internal liquid pressure. An efficient two-step algorithm is used to integrate these highly nonlinear equations. The model is validated with an analytical solution for both temperature and stress in a solidifying slab. It is applied to simulate continuous casting of a 120 mm billet and compares favorably with plant measurements of mold wall temperature, total heat removal, and shell thickness, including thinning of the corner. The model is ready to investigate issues in continuous casting such as mold taper optimization, minimum shell thickness to avoid breakouts, and maximum casting speed to avoid hot-tear crack formation due to submold bulging.  相似文献   

19.
This article presents a new system to control secondary cooling water sprays in continuous casting of thin steel slabs (CONONLINE). It uses real-time numerical simulation of heat transfer and solidification within the strand as a software sensor in place of unreliable temperature measurements. The one-dimensional finite-difference model, CON1D, is adapted to create the real-time predictor of the slab temperature and solidification state. During operation, the model is updated with data collected by the caster automation systems. A decentralized controller configuration based on a bank of proportional-integral controllers with antiwindup is developed to maintain the shell surface-temperature profile at a desired set point. A new method of set-point generation is proposed to account for measured mold heat flux variations. A user-friendly monitor visualizes the results and accepts set-point changes from the caster operator. Example simulations demonstrate how a significantly better shell surface-temperature control is achieved.  相似文献   

20.
 为了探究结晶器电磁搅拌(M EMS)对大圆坯结晶器内综合冶金行为的影响。以大断面圆坯连铸结晶器冶金行为为研究对象,基于电磁热流体与凝固传输理论建立三维耦合数值模型。揭示大圆坯连铸常用五孔水口浇注条件下结晶器内电磁场、流场、传热与凝固等综合冶金行为,提出电磁搅拌对结晶器冶金性能影响的多参量评价方法。以中碳铬钼齿轮钢650 mm大圆坯连铸为例,指出结晶器电磁搅拌存在最佳搅拌电流,可获得相对较好的综合冶金效果。具体表现为弯月面保持一定的切向速度和过热度,有利于保护渣的熔化和夹杂物的上浮去除;液面波动幅度在控制范围内,可避免卷渣、改善表面质量;结晶器内钢液过热得到有效耗散,有利于等轴晶形核改善铸坯内部质量;侧孔出流钢液速度得到有效控制,可抑制注流对初凝坯壳的冲刷,提高了初生坯壳生长的均匀性。此外,电磁搅拌产生的水平旋流强度也可得到有效控制,有利于避免常见的皮下白亮带现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号