首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid dispersion in the radial direction was investigated in the riser of a viscous liquid-solid fluidized bed 0.102 m in diameter and 3.5 m in height. Pressure fluctuations in the riser were also measured and analyzed to examine the behavior of fluidized particles. Effects of liquid velocity (0.15–0.45 m/s), solid circulation rate (2–8 kg/m2s), particle size (1–3 mm), and liquid viscosity (0.96–38 mPas) on pressure fluctuations and the liquid radial dispersion coefficient were determined. The infinite space model was employed to obtain the radial dispersion coefficient from the radial concentration profiles of the tracer. The pressure fluctuations were analyzed by means of autocorrelation coefficient as well as power spectral density function. The dominant frequency obtained from the autocorrelation coefficient or power spectral density function of pressure fluctuations decreases with increasing liquid viscosity or liquid velocity, but it increases with increasing particle size. The liquid radial dispersion coefficient decreases with increasing liquid velocity or viscosity, but it increases as the solid circulation rate or particle size increases. The liquid radial dispersion coefficient is related closely to the resultant behavior of fluidized particles. The radial dispersion coefficient has been well correlated with operating variables in terms of dimensionless groups.  相似文献   

2.
RADIAL DISPERSION AND BUBBLE CHARACTERISTICS IN THREE-PHASE FLUIDIZED BEDS   总被引:2,自引:0,他引:2  
The effects of gas and liquid velocities, liquid viscosity and particle size on the radial dispersion coefficient of liquid phase (Dr) and the bubble properties in three-phase fluidized beds have been determined. A new flow regime map based on the drift flux theory in three-phase fluidized beds has been proposed.

In three-phase fluidized beds, D, increases with increasing gas velocity in the bubble coalescing and in the slug flow regimes, but it decreases in the bubble disintegrating regime. The coefficient exhibits a maximum value in the bed of small particles with increasing liquid velocity at lower gas velocities. However, it increases with increasing liquid velocity at higher gas velocities. In two and three-phase fluidized beds of larger particles (6,8 mm), Dr exhibits a maximum value with an increase in liquid viscosity at lower gas velocities, but it increases at higher gas velocities. The mean bubble chord length and its rising velocity increase with increasing gas velocity and liquid viscosity. However, the bubble chord length decreases with an increase in liquid velocity and it exhibits a maximum value with increasing particle size in the bed. The radial dispersion coefficients in the bubble coalescing and disintegrating regimes of three-phase fluidized beds in terms of the Peclet number in the present and previous studies have been well represented by the correlations based on the concept of isotropic turbulence theory.  相似文献   

3.
Characteristics of pressure fluctuations and bubble size were investigated in the riser of a three-phase circulation fluidized bed bioreactor with viscous liquid medium, whose diameter is 0.102 m (ID) and 3.5 m in height. Effects of gas (0.01–0.07 m/s) and liquid (0.17–0.23 m/s) velocities and liquid viscosity (0.96–38 mPa·s) on the bubble size in the riser were examined. The bubbling phenomena in the bioreactor with viscous liquid medium were interpreted effectively by measuring and analyzing the pressure fluctuations by adopting chaos theory. The bubble size increased with increasing gas velocity or liquid viscosity, but decreased with increasing liquid velocity. The bubbling phenomena became more complicated and bubble size distribution tended to broad, with increasing gas velocity or liquid viscosity. The bubble size was well correlated in terms of correlation dimension of pressure fluctuations as well as dimensionless groups within these experimental conditions.  相似文献   

4.
The liquid dispersion and bubble distribution in the radial direction have been investigated in the riser of a three‐phase circulating fluidized bed whose diameter is 0.102m and 3.5m in height. Effects of gas and liquid velocities and solid circulation rate have been determined. It has been found that the radial distribution of bubbles is related closely to the liquid dispersion in the radial direction. The size and rising velocity of bubbles tend to increase as the radial position approaches to the center of the riser. The bubble size increases with increasing UG, but it decreases with increasing UL or GS in all radial positions. The radial dispersion coefficient of the liquid phase increases with increasing UG or GS, however, it tends to decrease with increasing UL. The value of Dr has been well correlated in terms of dimensionless groups based on the isotropic turbulence model.  相似文献   

5.
Particle fluctuations and dispersion were investigated in a three-phase (gas–liquid–solid) fluidized bed with an inside diameter of 0.102 m and height of 2.5 m. Effects of gas and liquid velocities, particle size (0.5–3.0 mm), viscosity (1.0–38×10−3 Pa s) and surface tension (52–72×10−3 N/m) of continuous liquid media on the fluctuating frequency and dispersion coefficient of fluidized particles were examined, by adopting the relaxation method base on the stochastic model. The fluctuations and dispersion of fluidized solid particles were successfully analyzed by means of the pressure drop variation with time, which was chosen as a state variable, based on the stochastic model. The fluctuating frequency and dispersion coefficient of particles increased with increasing gas velocity, due to the increase of bubbling phenomena and bed porosity in which particles could move, fluctuate and travel. The frequency and dispersion coefficient of particles showed local maximum values with a variation of liquid velocity. The two values of fluctuating frequency and dispersion coefficient of particles increased with increase in particle size, but decreased with increase in liquid viscosity due to the restricted movement and motion of particles in the viscous liquid medium. Both fluctuating frequency and dispersion coefficient of particles increased with decrease in surface tension of liquid phase, due to the increase of bubbling phenomena with decrease in σL. The values of obtained particle dispersion coefficient were well correlated in terms of dimensionless groups as well as operating variables.  相似文献   

6.
Dispersion characteristics of low density fluidized particles such as polyethylene and polypropylene were investigated by using the stochastic method in three-phase inverse fluidized beds with viscous liquid medium ( in height). To establish the relationship between the pressure drop variation and the particle dispersion in test section, the histogram of pressure drop fluctuations were also measured and analyzed. Effects of operating variables such as gas and liquid velocities, liquid viscosity and media particle kind (density) on the fluctuating frequency, dispersion coefficient and exiting rate of media particles from the test section were determined. The fluctuating frequency and dispersion coefficient of particles increased with increasing gas or liquid velocity, but decreased considerably with increasing liquid viscosity in three-phase inverse fluidized beds. The dispersion coefficient of media particles of relatively higher density exhibited a value higher than that of lower density particles. The dispersion coefficients of particles were well correlated with operating variables in terms of dimensionless groups.  相似文献   

7.
Experiments were conducted in a liquid-solid circulating fluidized bed to study the effect of liquid viscosity and solids inventory on pressure gradient, critical transitional liquid velocity, onset average solids holdup, axial solids holdup distribution, average solids holdup and solids circulation rate in circulating fluidization regime with riser operated in fixed inventory mode. The results indicate that critical transitional liquid velocity decreases with increase in liquid viscosity. The onset average solids holdup, on the other hand, increases with increase in either auxiliary liquid velocity or solids inventory. The variation of axial solids holdup distribution, average solids holdup and solids circulation rate with liquid viscosity when solid inventory was 0.15 m was dissimilar with either 0.25 m or 0.35 m solid inventory. Correlations were proposed for estimating the average solids holdup and are satisfactorily compared with experimental values.  相似文献   

8.
A liquid-solid circulating fluidized bed (LSCFB) is operated at high liquid velocity, where particle entrainment is highly significant and between the conventional liquid fluidized bed and the dilute phase liquid transport regimes. LSCFB has potential applications in the fields of food processing, biochemical processing, and petrochemical and metallurgical processing. It is well known that the flow characteristics in a liquid-solid circulating fluidized bed are different from those of a conventional liquid-solid fluidized bed. The limited studies available in literature do not provide complete understanding of the flow structure in this typical regime.

In the present work, experiments were carried out in a 0.0762 m ID and 3 m height laboratory-scale liquid-solid circulating fluidized bed apparatus by using various solid particles and tap water as fluidizing medium. In the experimental setup, two distributors (specially designed) were used to monitor solid circulation rate in the riser. The effects of operating parameters, i.e., primary liquid flow rate in the riser (Up), solid circulation rate (Gs), and particle diameter (dp), were analyzed from the experimental data. Finally, a correlation was developed from the experimental data to estimate average solid holdup in the riser, and it was compared with present experimental and available data in the literature. They agree well with a maximum root-mean-square deviation of 7.83%.  相似文献   

9.
Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 ...  相似文献   

10.
A comprehensive investigation was carried out to study hydrodynamics aspects of secondary air injection in circulating fluidized beds. This article presents modeling and results of computational fluid dynamics simulations of gas-solid flow in the riser section of a laboratory-scale (ID = 0.23 m, height = 7.6 m) circulating fluidized bed with a radial secondary air injector. The gas-solid flow model is based on the two-fluid (Eulerian-Eulerian) approach, where both gas and solids phases are treated as interpenetrating continua. A granular kinetic theory model is used to describe the solids phase stresses. The simulation results are compared with measured pressure drop and axial particle velocity profiles; reasonable agreement is obtained. Qualitatively, excellent agreement is obtained in predicting the increase in solids volume fraction below secondary air ports, the accumulation of solids around the center of the riser due to momentum of secondary air jets, and the absence of the solids down-flow near the wall above the secondary air injection ports, which are the prominent features of secondary air injection observed in the experiments.  相似文献   

11.
内构件对于高密度提升管流体力学行为的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
魏飞  杨艳辉  金涌 《化工学报》2000,51(6):806-809
引 言近年发展的高密度提升管反应器 ,由于其较高的颗粒固含量 ,很容易达到很高的反应效率 .同时由于其具有的高气固通量、颗粒的循环操作方式和优良的传热性能 ,使得这一类反应器特别适宜于以中间产物为目的产品、要求高转化率和高选择性的强放热氧化 -还原类反应过程[1,2 ] .但大量实验表明 ,提升管特别是高密度提升管中空隙率、气体和颗粒速度沿径向的分布很不均匀 .这样将造成非常严重的颗粒和气体返混 ,固体颗粒停留时间分布变宽 ,反应程度参差不齐 ,造成反应器的处理能力偏低[1~ 4 ] .许多研究者采用在提升管中加设内构件的方法来改…  相似文献   

12.
Characteristics of temperature fluctuations and heat transfer coefficient have been investigated in the riser of a circulating fluidized bed (0.102 m ID and 4.0 m in height). Effects of gas velocity and solid circulation rate on the temperature fluctuations, suspension density and heat transfer coefficient between the immersed heater and the bed have been considered in the riser. To analyze the characteristics of temperature fluctuations at the wall of the riser, the phase space portrait and Kolmogorov entropy of the fluctuations have been obtained, and the relation between the temperature fluctuations and the heat transfer coefficient has been examined. It has been found that the heat transfer system becomes more complicated and irregular with decreasing gas velocity and increasing solid circulation rate or suspension density in the riser. The heat transfer coefficient and Kolmogorov entropy of the temperature fluctuations have decreased with increasing the superficial gas velocity, while they have increased with increasing the solid circulation rate or suspension density in the bed. The heat transfer coefficient has been well correlated in terms of the Kolmogorov entropy, suspension density as well as operating variables in the riser. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   

13.
Characteristics of heat transfer were investigated in a three-phase circulating fluidized bed whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of gas and liquid velocities, particle size (0.5–3.0 mm), solid circulation rate (2.0–6.5 kg/m2 s), and surface tension (47.53–72.75×10−3 N/m) of liquid phase on the heat transfer coefficient were examined. It was found that the heat transfer coefficient (h) between the immersed vertical heater and the riser proper of the three-phase circulating fluidized bed increased with increase in gas and liquid velocities, but did not change considerably with a further increase in liquid velocity, even in the higher range. The value of heat transfer coefficient increased gradually with increase in the size of fluidized solid particles without exhibiting the local minimum, which represented that there was no bed contraction in three-phase circulating fluidized beds due to the higher liquid velocity. The heat transfer system could attain a stabilized condition more easily with increase in particle size. The value of heat transfer coefficient increased with increase in solid circulation rate in all the cases studied due to the increase of solid holdup in the riser. The value of heat transfer coefficient decreased with increase in surface tension of liquid phase, due to the decrease of bubbling phenomena and bubble holdup. The decrease in liquid surface tension could lead to an increase in elapsed time from which the temperature difference between the heater surface and the riser became an almost constant value. The experimentally obtained values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.  相似文献   

14.
Axial dispersion coefficients in three-phase fluidized beds have been measured in a 0.152 m-ID x 1.8 m high column by the two points measuring technique with the axially dispersed plug flow model. The effects of liquid velocity (0.05–0.13 m/s), gas velocity (0.02–0.16 m/s) and particle size (3-8 mm) on the axial dispersion coefficient at the different axial positions (0.06–0.46 m) in the bed have been determined. The axial dispersion coefficient increases with increasing gas velocity but it decreases with an increase in particle size and exhibits a maximum value with an increase in the axial position from the distributor. The axial dispersion coefficients in terms of the Peclet number have been correlated in terms of the ratio of fluid velocities, the ratio of the panicle size to column diameter, and the dimensionless axial position in the bed based on the isotropic turbulence theory.  相似文献   

15.
韦朝海  谢波 《化学工业与工程》1999,16(3):129-134,168
研究气升式内环流生物反应器液体循环速度,分别采用一种传统圆柱型导流筒和三种不同结构参数缩放型导流筒,试验条件分别为空气-水和空气-CMC两相系统以及空气-水-树脂三相系统,试验结果表明,对于空气-水和空气-CMC溶液两相系统以及空气-水-树脂三相系统,液体循环速度随能气速度提高而增大;  相似文献   

16.
刘宝勇  魏绪玲  郭庆杰  王良成  杨西 《应用化工》2012,41(5):752-755,760
在φ0.4 m×9.1 m循环流化床提升管中,采集了分布板以上不同轴向高度的压力瞬时波动信号,并采用功率谱进行分析。分析发现,压力瞬时波动功率谱谱图中存在一个振幅最大点,即为主频。增大固体颗粒循环速率或减小提升管操作气速,主频对应振幅增大,而功率谱主频减小。相同操作条件下,随轴向位置的增高,压力瞬时波动的主频基本不变,而主频对应振幅减小。  相似文献   

17.
Characteristics of size, rising velocity and distribution of liquid drops were investigated in an immiscible liquid–liquid–solid fluidized-bed reactor whose diameter was 0.102 and 2.5 m in height. In addition, pressure fluctuations were measured and analyzed by adopting the theory of chaos, to discuss the relation between the properties of liquid drops and the resultant flow behavior of three (liquid–liquid–solid) phase in the reactor. Effects of velocities of dispersed (0–0.04 m s−1) and continuous (0.02–0.14 m s−1) liquid phases and fluidized particle size (1, 2.1, 3 or 6 mm) on the liquid drop properties and pressure fluctuations in the reactor were determined. The resultant flow behavior of liquid drops became more irregular and complicated with increasing the velocity of dispersed or continuous liquid phase, but less complicated with increasing fluidized particle size, in the beds of 1.0 or 2.1 mm glass beads. In the beds of 3.0 or 6.0 mm glass beads, the effects of continuous phase velocity was marginal. The resultant flow behavior of liquid drops was dependent strongly upon the drop size and its distribution. The drop size increased with increasing dispersed phase velocity, but decreased with increasing particle size. The drop size tended to increase with approaching to the center or increasing the height from the distributor. The size and rising velocity of liquid drops and correlation dimension of pressure fluctuations have been well correlated in terms of operating variables.  相似文献   

18.
The flow behavior of the solids phase in the fully developed region of a laboratory-scale circulating fluidized bed riser was studied using an assembly of sixteen NaI detectors to determine the position of a 500 μm radioactive particle, 100 times/s. The particle location was inferred from the number of γ-rays recorded by the assembly. The knowledge of the instantaneous positions enabled the determination of the instantaneous and mean velocity fields. Tests were conducted in a 0.082 m diameter, 7 m tall riser using 150 μm silica sand particles. Data were obtained at a gas superficial velocity of 4 m/s and solids mass fluxes from 23 to 75 kg/m2·s. Radial profiles of axial particle velocity showed that the solids velocity decreased with increasing solids circulation rates. Correspondingly, turbulent particle velocities and solids dispersion coefficient in the longitudinal direction were found to decrease as the solids circulation rate increased. The cross-sectional area where, on average, solids downflow took place, increased with increasing solids circulation rate.  相似文献   

19.
Heat transfer characteristics of two (liquid-gas, liquid-solid) and three (liquid-gas-solid) phase fluidized beds have been studied in a 15.2 cm-ID column fitted with an axially mounted cylindrical healer. Effects of gas velocity (0-12 cm/s). liquid velocity (0-16cm/s), particle size (1.7-8.0 mm) and liquid viscosity (0.001-0.039 Pa s) on heat transfer coefficient were determined. The heat transfer coefficient increased with fluid velocities and particle size and it decreased with liquid viscosity in two and three phase fluidized beds. The bed porosity at which the maximum heat transfer occurred decreased with particle size but increased with liquid viscosity. The coefficient were correlated in terms of experimental variables. Modified Nusselt number from the present and previous studies has been correlated with modified Prandtl and Reynolds numbers.  相似文献   

20.
液-固流化床中液速分布与颗粒循环流动   总被引:4,自引:0,他引:4  
通过理论分析和实验研究考察了液一固平板流化床中颗粒流和液流的运动规律,提出了将分散的颗粒流连续介质化的假设和基于容积通量的流休力学表达方式,建立了液体流动和颗粒循环流动的数学模型并定义了颗粒流与液流的有效粘度。理论计算表明,液体通量的径向分布为抛物线,液流有效粘度和液含率与表观液速有关:颗粒通量的径向分布也为抛物线且颗粒上流区与回流区的分界点在0.577D,循环流动强度取决于液含率和液体密度,但颗粒循环分界点的位置与颗粒类型和操作液速无关。实验观察支持模型预测结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号