共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Capela R. Catalo M.F. Ribeiro P. Da Costa G. Djga-Mariadassou F. Rama Ribeiro C. Henriques 《Catalysis Today》2008,137(2-4):157
The objective of this work is the study of fundamental common aspects of NOx catalytic reduction over a Co/Pd-HFER zeolite catalyst, using methanol or methane as reducing agent. Temperature Programmed Surface Reaction (TPSR) studies were performed with reactant mixtures comprising NO2 and one of the reducing agents.The formation of formaldehyde was detected in both studied reactions (NO2–CH4 and NO2–CH3OH) in the temperature range between 100 and 220 °C. At higher temperature, when the NOx reduction process effectively begins, formaldehyde starts to be consumed.Using methanol as reducing agent, nitromethane and nitrosomethane, are detected. At 300 °C these species are consumed and cyanides and iso-cyanides formation occurs. On the contrary, with methane, these last species were not detected; however, there are strong evidences for CH3NO and CH3NO2 formation.Thus, using methanol or methane, similar phenomena were detected. In both cases, common intermediary species seem to play an important role in the NOx reduction process to N2.These results suggest that methanol can be considered as a reaction intermediate species in the mechanism of the reduction of NO2 with methane, over cobalt/palladium-based ferrierite catalysts. 相似文献
2.
In this study, the nature of surface intermediates generated by adsorption of NO and NO2 on a commercial ceria–zirconia powder of composition Ce0.69Zr0.31O2 was investigated using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The conditions of occurrence of the main adsorbed species, i.e. nitrites and nitrates, are studied semi-quantitatively as a function of catalyst pre-treatment and/or type of adsorbed NOx molecule. On the partially reduced ceria–zirconia, the primary role of NOx is to re-oxidize the surface via adsorption/decomposition on reduced sites. By contrast, the formation of nitrites and nitrates readily occurs on oxidized surfaces, the latter kind of species being strongly promoted in the case of NO2 adsorption only. 相似文献
3.
Mesoporous Ni-CaO-ZrO2 nanocomposites with high thermal stability were designed and employed in the CO2/CH4 reforming. The nanocomposites with appropriate Ni/Ca/Zr molar ratios exhibited excellent activity and prominent coking resistivity. The Ni crystallites were effectively controlled under the critical size for coke formation in such nanocomposites. It was found that low Ni content resulted in high metal dispersion and good catalytic performance. Moreover, the basicity of the matrices improved the chemisorption of CO2 and promoted the gasification of deposited coke on the catalyst. 相似文献
4.
Magorzata Adamowska Andrzej Krzto Mieczysawa Najbar Patrick Da Costa Grald Djga-Mariadassou 《Catalysis Today》2008,137(2-4):288
Gas–solid interactions and surface intermediates evolution after NO adsorption onto calcined Ce0.62Zr0.38O2 were investigated. The results of adsorption and temperature-programmed desorption of NO were explained using diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) coupled with temperature-programmed experiments in environmental cell. Surface NO-containing species such as nitrites and nitrates were identified during evolution of NO on the surface of Ce0.62Zr0.38O2 solid solution at low and high temperature. The ceria–zirconia solid solution was found to be active in deNOx reaction in the presence of a “toluene, propene and propane” mixture. 相似文献
5.
C.M.L. Scholz K.M. Nauta M.H.J.M. de Croon J.C. Schouten 《Chemical engineering science》2008,63(11):2843-2855
In this paper a global reaction kinetic model is used to understand and describe the NOx storage/reduction process in the presence of CO2 and H2O. Experiments have been performed in a packed bed reactor with a Pt–Ba/γ-Al2O3 powder catalyst (1 wt% Pt and 30 wt% Ba) with different lean/rich cycle timings at different temperatures (200, 250, and ) and using different reductants (H2, CO, and C2H4). Model simulations and experimental results are compared. H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. The rate of NO storage increases with temperature. The reduction of stored NO with H2 is complete for all investigated temperatures. At temperatures above , the water gas shift (WGS) reaction takes place and H2 acts as reductant instead of CO. At , CO and C2H4 are not able to completely regenerate the catalyst. At the higher temperatures, C2H4 is capable of reducing all the stored NO, although C2H4 poisons the Pt sites by carbon decomposition at . The model adequately describes the NO breakthrough profile during 100 min lean exposure as well as the subsequent release and reduction of the stored NO. Further, the model is capable of simulating transient reactor experiments with 240 s lean and 60 s rich cycle timings. 相似文献
6.
The NO SCR (selective catalytic reduction) activity with H2 in the presence of excess O2 was investigated over Pd/MFI catalyst prepared by sublimation method. With GHSV=90?000 h−1, a very high steady-state conversion of NO to N2 (70%) is achieved at 100 °C. Significant reorganizations take place inside the catalyst upon its first contact with all reactants and products at the reaction temperature. Pd0, which has a significant role in the NO-H2-O2 reaction, is possibly the active site for NO reduction. The formation of Pd-β hydride deactivates the catalyst for NO reduction. Throughout the entire NO-H2-O2 reaction, no N2O or NO2 is formed; N2 is the only N-containing product. The presence of O2 inhibits the formation of undesirable NH3. The rate of the NO+H2 reaction is fast or comparable to that of the H2+O2 reaction. The oxidation of Pd0 and subsequent agglomeration of PdO are responsible for the decreased NO reduction activity at high temperature. 相似文献
7.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made. 相似文献
8.
Variable temperature adsorption of nitric oxide on MoO3 supported on tetragonal zirconia (MoOx/t-ZrO2), obtained by slurry deposition, was investigated by EPR spectroscopy. The influence of molybdenum loading and co-adsorbed oxygen on the adsorption process of NO was elucidated. Particular attention was devoted to redox character of NO activation. Another important aspect concerned is the nature of surface nitrosyl complexes of molybdenum and their thermal stability. The role of oxygen in NO transformation over catalyst surface was also discussed. 相似文献
9.
M. Zawadzki W. Walerczyk F.E. López-Suárez M.J. Illán-Gómez A. Bueno-López 《Catalysis communications》2011,12(13):1238-1241
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2. 相似文献
10.
Oxidation of CH4 over Pd supported on TiO2-doped SiO2: Effect of Ti(IV) loading and influence of SO2
A.M. Venezia G. Di Carlo G. Pantaleo L.F. Liotta G. Melaet N. Kruse 《Applied catalysis. B, Environmental》2009,88(3-4):430-437
Titania-modified silicas with different weight% of TiO2 were prepared by sol–gel method and used as supports for Pd (1 wt%) catalysts. The obtained materials were tested in the oxidation of methane under lean conditions in absence and in presence of SO2. Test reactions were consecutively performed in order to evaluate the thermal stability and poisoning reversibility. Increasing amounts of TiO2 improved the catalytic activity, with an optimum of the performance for 10 wt% TiO2 loading. Moreover, the titania-containing catalysts exhibited a superior tolerance towards SO2 by either adding it to the reactants or feeding it as a pure pretreatment atmosphere at 350 °C. Catalysts were characterized by XPS, XRD, FT-IR and BET measurements. According to the structural and surface analyses, the mixed oxides contained Si–O–Ti linkages which were interpreted as being responsible for the enhanced intrinsic activity of supported PdO with respect to PdO on either pure SiO2 or pure TiO2. Moreover, the preferential interaction of the sulfur molecule with TiO2 and the easy SOx desorption from high surface area silica were the determining factors for the superior SO2 tolerance of the TiO2-doped catalysts. 相似文献
11.
Shigeo Satokawa Ken-ichi Yamaseki Hiroshi Uchida 《Applied catalysis. B, Environmental》2001,34(4):515
The effect of SO2 for the selective reduction of NO by C3H8 on Ag/Al2O3 was investigated in the presence of excess oxygen and water vapor. The NOx conversion decreased permanently even in the presence of a low concentration of SO2 (0.5–10 ppm) at <773 K. The increase in SO2 concentration resulted in a large decrease in NOx conversion at 773 K. However, when the reaction temperature was more than 823 K, the activity of Ag/Al2O3 remained constant even in the presence of 10 ppm of SO2. The sulfate species formed on the used Ag/Al2O3 were characterized by a temperature programmed desorption method. The sulfated species formed on silver should mainly decrease the deNOx activity on the Ag/Al2O3. The sulfated Ag/Al2O3 was appreciably regenerated by thermal treatment in the deNOx feed at 873 K. The moderate activity remains at 773 K in the presence of 1 ppm SO2 for long time by the heat treatment at every 20 h intervals. 相似文献
12.
Aditya Savara Mei-Jun Li Wolfgang M.H. Sachtler Eric Weitz 《Applied catalysis. B, Environmental》2008,81(3-4):251-257
Ammonium nitrate is thermally stable below 250 °C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 °C melting point, while acidic solids catalyze this reaction even at temperatures below 100 °C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3−, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 °C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 °C). 相似文献
13.
Rui Marques Linda Mazri Stphanie Da Costa Franck Delacroix Grald Djga-Mariadassou Patrick Da Costa 《Catalysis Today》2008,137(2-4):179
The aim of the present work is to study the selective reduction of NOx from natural gas sources. The unburned methane can be used as reductant. Another reductant such as hydrogen can be created in situ, using a microreformer. The results suggest that the NOx are reduced by H2 at low temperature, when methane is not activated and at higher temperature the methane is then the main reductant. However, the catalytic behaviour depends on the metal precursor and the catalyst treatment. The most prominent result is obtained on the palladium catalyst prepared from Pd(NH3)4(NO3)2 precursor. Comparing the reduction and the calcination step in the course of catalyst preparation, one can conclude that calcination lead to the higher activity in deNOx, since reduced catalysts are oxidized during the deNOx process. 相似文献
14.
Rui Marques Linda Mazri Stphanie Da Costa Franck Delacroix Grald Djga-Mariadassou Patrick Da Costa 《Catalysis Today》2008,137(2-4):185
The aim of the present work is to study the selective reduction of NOx from natural gas sources using unburned methane or hydrogen as reducing agents. The results suggest that the NOx are reduced by H2 at low temperature, when methane is not activated and at higher temperature the methane is then the main reducing agent. Similar results are obtained for alumina supported palladium and alumina supported cobald-palladium catalysts at low temperature in presence of hydrogen suggesting that the active phase for the reaction NO/H2 is the palladium. However, at high temperature the higher activity is obtained on bimetallic catalyst. The presence of cobalt enhances the catalytic activity. This result suggests that cobalt and palladium both in cationic form are the active sites when the reducing agent is the methane. 相似文献
15.
Highly-ordered TiO2 nanotube arrays (TiNTA) were prepared by an electrochemical anodization method and used as the carrier material to load 1 wt.% Ru. The Ru/TiNTA catalyst was then applied to the combination reactions of the partial oxidation of methane reaction (POM) with the carbon dioxide reforming with methane reaction (CRM) for syngas production. In comparison with the commercial TiO2 powder (P25) supported 1 wt.% Ru catalyst, Ru/TiNTA shows higher activity and much better stability. The superior performance of Ru/TiNTA is attributed to the specific monolithic-like structure and confinement effect of TiNTA. 相似文献
16.
The interaction of CO, C2H4, O2, and NO reaction gas compounds over the metallic Pd/Al2O3 and Pd/OSC/Al2O3 monoliths was investigated in order to understand the behaviour of OSC material in the oxidation and reduction reactions. FT-IR gas analyser was used for the analysis of the product gas composition. Several activity experiments carried out with dissimilar feedstreams have revealed that the Ce
x
Zr1–x
O2 mixed oxide is an oxygen storage compound, which promotes CO and C2H4 oxidation as well as NO reduction in particular at low temperatures. 相似文献
17.
Shetian Liu Akira Obuchi Junko Uchisawa Tetsuya Nanba Satoshi Kushiyama 《Applied catalysis. B, Environmental》2002,37(4)
A number of supported metal oxide catalysts were screened for their catalytic performance for the oxidation of carbon black (CB; a model diesel soot) using NO2 as the main oxidant. It was found that contact between the carbon and catalyst was a key factor in determining the rate of oxidation by NO2. Oxides with low melting points, such as Re2O7, MoO3 and V2O5 showed higher activities than did Fe3O4 and Co3O4. The activities of MoO3 and V2O5 on various supporting materials were also examined. MoO3/SiO2 was the most active catalyst among the supported MoO3 examined, whereas, V2O5/MCM-41 showed the highest activity among the supported V2O5. Different performances of the supported MoO3 catalysts were explained by the interaction of MoO3 with the supports: a strong MoO3/support interaction may result in a poor mobility of MoO3 and a poor activity for oxidation of carbon by NO2. The high activity of V2O5/MCM-41 was associated with its catalysis of the oxidation of SO2 by NO2 to form SO3, which substantially promotes oxidation of carbon by NO2. Addition of transition metal oxides or sulfates to supported MoO3 and V2O5 was also investigated. Combining MoO3 or V2O5 with CuO on SiO2, adding VOSO4 to MoO3/SiO2 or MoO3/Al2O3 and adding TiOSO4 or CuSO4 to V2O5/Al2O3 improved the catalytic performance. 相似文献
18.
L. Chmielarz P. Kutrowski M. Michalik B. Dudek Z. Piwowarska R. Dziembaj 《Catalysis Today》2008,137(2-4):242
Vermiculites intercalated with alumina pillars and modified with transition metals (Cu, Fe) were studied as catalysts of selective reduction of NO with ammonia. Prior to the pillaring process, a raw vermiculite was treated with a solution of nitric acid and then citric or oxalic acid in order to reduce the overall charge of layers. This modification was necessary for a successful pillaring of the clay. Transition metals (Fe, Cu) were deposited on the surface of the modified vermiculites by an ion-exchange method. The obtained samples were characterized with respect to composition (EPMA), structure (XRD), texture (BET) and chemical nature of deposited transition metal species (UV–vis–DRS). The vermiculite based materials have been found to be active and selective catalysts of the DeNOx process. The Cu-containing samples were catalytically active at lower temperatures than the pillared clays modified with iron. A side reaction of ammonia oxidation by oxygen decreased the effectiveness of the DeNOx process in the high temperature range. 相似文献
19.
Nissrine El Hassan Anne Davidson Patrick Da Costa Grald Djga-Mariadassou 《Catalysis Today》2008,137(2-4):191
In a general model of “three-function deNOx” catalyst, the partial oxidation of methane by NO2 is an important step (CH4 + NO2 → CxHyOz + NO). To study the effect of the length and diameter, in the mesopores of SBA-15, we have synthesized catalysts with 3 wt.% cobalt supported on SBA-15, with differences in length and diameter of channels. Three different cobalt species were detected on all catalysts. We demonstrated by TPSR experiments that the activity of cobalt/SBA-15 catalysts is affected by the length, the diameter and connections between mesopores of the SBA-15 supports. We show that by changing textural properties of silica support the temperature of 100% conversion of NO2 into NO can decrease by more than 100 °C. 相似文献
20.
The interaction of NO and O2 with 5 mol.% of vanadia deposited on Ce0.10Zr0.90O2 and Ce0.69Zr0.31O2 supports by wet impregnation was studied by means of EPR and IR. The supports were structurally characterized by XRD and Raman spectroscopy. Influence of the phase composition of the support on vanadium speciation as well as on surface architecture of the oxovanadium entities was discussed. The NO forms adsorbed on vanadium-containing systems were compared to those observed on bare CeO2-ZrO2 supports. The main products appearing on the catalysts surface during the consecutive reaction with NO and O2 were identified and their thermal evolution was observed. Changes in vanadium speciation accompanying redox processes related to NO and O2 activation were also observed and discussed. 相似文献