首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of methanol crossover on the fuel utilization of a passive direct methanol fuel cell (DMFC) was reported. The results revealed that the Faradaic efficiency decreased from 46.9 to 17.4% when methanol concentration increased from 1.0 to 8.0 mol L–1 at the lower current density 11.1 mA cm–2. However, the Faradaic efficiency increased from 14.7 to 31.3% when methanol concentration increased from 1.0 to 8.0 mol L–1 at a higher current density of 44.4 mA cm–2. On the other hand, although the amount of methanol was increased, the Faradaic efficiency did not change, obviously due to the uniform methanol crossover and methanol diffusion at the same methanol concentration and constant current.  相似文献   

2.
A comparative study of the use of supported and unsupported catalysts for direct methanol fuel cells has been performed. The effect of catalyst loading, fuel concentration and temperature dependence on the anode, cathode and full fuel cell performance was determined in a fuel cell equipped with a reversible hydrogen reference electrode. Although the measured specific activities of supported catalysts were as much as 3-fold greater than the unsupported catalysts, membrane electrode assemblies prepared with supported catalysts showed no improvement with loadings above 0.5 mg/cm2. Fuel cells utilizing 0.46 mg/cm2 supported catalyst electrodes performed as well as unsupported catalyst electrodes with 2 mg/cm2. The temperature dependence and methanol concentration dependence studies both suggest increased methanol permeation through the thinner supported catalyst layers relative to the unsupported catalyst layers.  相似文献   

3.
Membrane electrodes prepared by chemical deposition of platinum directly onto the anion exchange membrane electrolyte were tested in direct methanol alkaline fuel cells. Data on the cell voltage against current density performance and anode potentials are reported. The relatively low fuel cell performance was probably due to the low active surface area of Pt deposits on the membrane comparing to other membrane electrode assembly (MEA) fabrication methods. However, the catalysed membrane electrode showed good performance for oxygen reduction. A reduction in cell internal resistance was also obtained for the catalysed membrane electrode. By combining the catalysed membrane electrodes with a catalysed mesh, maximum current density of 98 mA cm–2 and peak power density of 18 mW cm–2 were achieved.  相似文献   

4.
A five-cell 150 W air-feed direct methanol fuel cell (DMFC) stack was demonstrated. The DMFC cells employed Nafion 117® as a solid polymer electrolyte membrane and high surface area carbon supported Pt-Ru and Pt catalysts for methanol electrooxidation and oxygen reduction, respectively. Stainless steel-based stack housing and bipolar plates were utilized. Electrodes with a 225 cm2 geometrical area were manufactured by a doctor-blade technique. An average power density of about 140 mW cm–2 was obtained at 110 °C in the presence of 1 M methanol and 3 atm air feed. A small area graphite single cell (5 cm2) based on the same membrane electrode assembly (MEA) gave a power density of 180 mW cm–2 under similar operating conditions. This difference is ascribed to the larger internal resistance of the stack and to non-homogeneous reactant distribution. A small loss of performance was observed at high current densities after one month of discontinuous stack operation.  相似文献   

5.
A direct methanol/oxygen solid polymer electrolyte fuel cell was demonstrated. This fuel cell employed a 4 mg cm–2 Pt-Ru alloy electrode as an anode, a 4 mg cm–2 Pt black electrode as a cathode and an acid-doped polybenzimidazole membrane as the solid polymer electrolyte. The fuel cell is designed to operate at elevated temperature (200°C) to enhance the reaction kinetics and depress the electrode poisoning, and reduce the methanol crossover. This fuel cell demonstrated a maximum power density about 0.1 W cm–2 in the current density range of 275–500 mA cm–2 at 200°C with atmospheric pressure feed of methanol/water mixture and oxygen. Generally, increasing operating temperature and water/methanol mole ratio improves cell performance mainly due to the decrease of the methanol crossover. Using air instead of the pure oxygen results in approximately 120 mV voltage loss within the current density range of 200–400 mA cm–2 .  相似文献   

6.
A silicon-based micro direct methanol fuel cell (μDMFC) for portable applications has been developed and its electrochemical characterization carried out in this study. Anode and cathode flowfields with channel and rib width of 750 μm and channel depth of 400 μm were fabricated on Si wafers using the microelectromechanical system (MEMS) technology. A membrane-electrode assembly (MEA) was specially fabricated to mitigate methanol crossover. This MEA features a modified anode backing structure in which a compact microporous layer is added to create an additional barrier to methanol transport thereby reducing the rate of methanol crossing over the polymer membrane. The cell with the active area of 1.625 cm2 was assembled by sandwiching the MEA between two micro-fabricated Si wafers. Extensive cell polarization testing demonstrated a maximum power density of 50 mW/cm2 using 2 M methanol feed at 60 °C. When the cell was operated at room temperature, the maximum power density was shown to be about 16 mW/cm2 with both 2 and 4 M methanol feed. It was further found that the present μDMFC still produced reasonable performance under 8 M methanol solution at room temperature.  相似文献   

7.
Membrane electrode assemblies (MEA) were prepared using PtRu black and 60 wt.% carbon-supported platinum (Pt/C) as their anode and cathode catalysts, respectively. The cathode catalyst layers were fabricated using various amounts of Pt (0.5 mg cm−2, 1.0 mg cm−2, 2.0 mg cm−2, and 3.0 mg cm−2). To study the effect of carbon support on performance, a MEA in which Pt black was used as the cathode catalyst was fabricated. In addition, the effect of methanol crossover on the Pt/C on the cathode side of a direct methanol fuel cell (DMFC) was investigated. The performance of the single cell that used Pt/C as the cathode catalyst was higher than single cell that used Pt black and this result was pronounced when highly concentrated methanol (above 2.0 M) was used as the fuel.  相似文献   

8.
A novel triple-layer proton exchange membrane comprising two thin layers of structurally modified chitosan, as methanol barrier layers, both sides coated with Nafion®105 is prepared and tested for high-performance direct methanol fuel cell applications. A tight adherence is detected between layers from SEM and EDX data for the cross-sectional area of the newly designed membrane, which are attributed to high affinity of opposite charged polyelectrolyte layers. Proton conductivity and methanol permeability measurements show improved transport properties for the multi-layer membrane compared to Nafion®117 with approximately the same thickness. Moreover, direct methanol fuel cell tests reveal higher open circuit voltage, power density output, and overall fuel cell efficiency for the triple-layer membrane than Nafion®117, especially at concentrated methanol solutions. A power output of 68.10 mW cm?2 at 5 M methanol feed is supplied using multi-layer membrane, which is found to be about 72% more than that of for Nafion®117. In addition, fuel cell efficiency for multi-layer membrane is measured about 19.55% and 18.45% at 1 and 5 M methanol concentrations, respectively. Owing to the ability to provide high power output, significantly reduced methanol crossover, ease of preparation and low cost, the triple-layer membrane under study could be considered as a promising polyelectrolyte for high-performance direct methanol fuel cell applications.  相似文献   

9.
H. Dohle  J. Mergel 《Electrochimica acta》2007,52(19):6060-6067
In this paper, the effect of hydrogen generation in direct methanol fuel cells (DMFC) is described. Under certain operating conditions hydrogen generation occurs in DMFC causing an additional methanol consumption and a decrease of the cell voltage.For the present experiments a segmented cell with an active area of 244 cm2 is used. The cell has 196 segments which are regularly distributed on the whole area. By this experimental setup hydrogen generation was found in regions with insufficient air supply. Hydrogen generation was analyzed by systematically applying different air flow rates and detecting the local current densities. The theory for hydrogen generation is confirmed by the results obtained from the segmented cell. A correlation between open circuit voltage (OCV), air flow rate and hydrogen generation was observed. Furthermore, half-cell measurements with different methanol concentrations were performed and used for analyzing the processes during hydrogen generation.The work clearly indicates the importance of sufficient cathode air supply for DMFC. Starved cathode areas not only do not contribute to the overall current generation but in addition reduce the power and efficiency by the parasitic generation of hydrogen.  相似文献   

10.
The cell performance of direct methanol fuel cells (DMFC) is 0.5 V at 0.5 A cm–2 under high pressure oxygen operation (3 bar abs.) at 110 °C. However, high oxygen pressure operation at high temperatures is only useful in special market niches. Therefore, our work has now focused on air operation of a DMFC under low pressure (up to 1.5 bar abs.). At present, a power density of more than 100 mW cm–2 can be achieved at 0.5 V on air operation at 110 °C. These measurements were carried out in single cells with an electrode area of 3 cm2 and the air stoichiometry only amounted to 10. The effects of methanol concentration and temperature on the anode performance were studied by pseudo half cell measurements and the results are presented together with their impact on the cell voltage. A cell design with an electrode area of 550 cm2, which is appropriate for assembling a DMFC stack, was tested. A three-celled stack based on this design revealed nearly the same power densities as in the small experimental cells at low air excess pressure and the voltage–current curves for the three cells were almost identical. At 110 °C a power output of 165 W at a stack voltage of 1.5 V can be obtained in the air mode.  相似文献   

11.
Results on the performance of a 25 cm2 liquid-feed solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC), operating under near-ambient conditions, are reported. The SPE-DMFC can yield a maximum power density of c. 200 mW cm−2 at 90 °C while operating with 1 M aqueous methanol and oxygen under ambient pressure. While operating the SPE-DMFC under similar conditions with air, a maximum power density of ca. 100 mW cm−2 is achieved. Analysis of the electrode reaction kinetics parameters on the methanol electrode suggests that the reaction mechanism for methanol oxidation remains invariant with temperature. Durability data on the SPE-DMFC at an operational current density of 100 mA cm−2 have also been obtained.  相似文献   

12.
Nanoparticles of mesoporous silica are synthesized and modified by Poly-thiophene (PT) to improve the electrical conductivity. Platinum nanoparticles are synthesized and deposited on the surface of the modified mesoporous silica. The materials in each step are well characterized by X-ray powder diffraction, high resolution transmission electronic microscopy, thermal analysis (TGA/DTA), nitrogen sorption analysis, elemental analysis (CHNS), inductive coupled plasma and optical emission spectroscopy. This composite is used as an anodic electrocatalyst for direct methanol fuel cell application. The influence of loading of the electrocatalyst and temperature on the performance of a direct methanol fuel cell is studied and the results are discussed. A maximum power density of 35.96 mW cm?2 at a current density of 129.44 mA cm?2 was obtained, which is attributed to the dispersion and accessibility of the modified mesoporous silica support in the electrocatalyst mixture for the methanol oxidation reaction.  相似文献   

13.
To reduce the effect of methanol permeated from the anode, the structure of the cathode was modified from a single layer with Pt black catalyst to two-layer with PtRh black and Pt black catalysts, respectively. The current density of the direct methanol fuel cell (DMFC) using the two-layer cathode was improved to 228 mA/cm-2 compared to that (180 mA/cm-2) of the DMFC using the single layer cathode at 0.3 V and 303 K. From the cyclic voltammograms (CVs), it is indicated that the amount of adsorbates on the metal catalyst in the two-layer cathode is less than that of adsorbates in the single layer cathode after methanol test. In addition, the adsorbates were removed very rapidly by electrochemical oxidation from the two-layer cathode. It is suggested fromex situ X-ray absorption near edge structure analysis that the d-electron vacancy of Pt atom in the two-layer cathode is not changed by the methanol test. Thus, Pt is not covered with the adsorbates, which agrees well with the results of CV.  相似文献   

14.
The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of Nafion® based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA cm?2 at 0.6 V is obtained at 70 °C with H2/air as the fuel and oxidant. The peak power density of 110 mW cm?2 is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied.  相似文献   

15.
The oxidation of formic acid by the palladium catalysts supported on carbon with high surface area was investigated. Pd/C catalysts were prepared by using the impregnation method. 30 wt% and 50 wt% Pd/C catalysts had a high BET surface area of 123.7 m2/g and 89.9 m2/g, respectively. The fuel cell performance was investigated by changing various parameters such as anode catalyst types, oxidation gases and operating temperature. Pd/C anode catalysts had a significant effect on the direct formic acid fuel cell (DFAFC) performance. DFAFC with Pd/C anode catalyst showed high open circuit potential (OCP) of about 0.84 V and high power density at room temperature. The fuel cell with 50 wt% Pd/C anode catalyst using air as an oxidant showed the maximum power density of 99 mW/cm2. On the other hand, a fuel cell with 50 wt% Pd/C anode catalyst using oxygen as an oxidant showed a maximum power density of 163 mW/cm2 and the maximum current density of 590 mA/cm2 at 60 °C.  相似文献   

16.
The effects of methanol crossover on cathode overpotential of direct methanol fuel cells (DMFCs) were investigated by focusing on a mixed potential effect and surface poisoning of the catalyst. Experiments using different membranes and catalyst loadings were performed and compared with a semi‐quantitative model to discuss the main cause of the cathode overpotential. When the measured methanol crossover increased, cathode overpotential increased at particular threshold values, which were 150 mA cm–2 at 0.3 mg cm–2 of cathode platinum (Pt) loading and above 200 mA cm–2 at 1.1 mg cm–2. The modelling results also supported this tendency, and showed that Pt surface was poisoned to a great extent above the threshold methanol crossover where the cathode overpotential increased sharply, while the cathode overpotential remained low and was explained solely by the mixed potential below the threshold value. The threshold methanol crossover can be regarded as the acceptable value, below which the cathode overpotential from methanol crossover remains low, and was related with the Pt loading in the cathode. The reduction of methanol crossover through membranes below the acceptable values will contribute greatly to a decrease in the cathode overpotential and to the reduction of catalyst loadings.  相似文献   

17.
A direct methanol fuel cell using a mixture of O2 and CO2 at the cathode was evaluated using anion exchange materials and cathode catalysts of Pt and a non‐Pt catalyst. The MEA based on non‐noble metal catalyst Acta 4020 showed superior performance than Pt/C based MEA in terms of open circuit potential and power density in carbonate environment. The fuel cell performance was improved by applying anion exchange ionomer in the catalyst layer. A maximum power density of 4.5 mW cm–2 was achieved at 50 °C using 6.0 M methanol and 2.0 M K2CO3.  相似文献   

18.
Novel proton exchange membranes consisting of an inorganic filler, namely sulfonated graphene oxide, embedded in sulfonated polysulfone were fabricated. The membrane performance depended on the sulfonated graphene oxide content possessed the functional groups to provide the interfacial interaction with sulfonated polysulfone through ionic channels and blocking effect. The membrane with 3% v/v sulfonated graphene oxide content embedded in the matrix was shown to be suitable for direct methanol fuel cell applications. The membrane exhibited the highest proton conductivity of 4.27?×?10?3 S cm?1 which was higher than that of Nafion117. Moreover, the membrane provided the lowest methanol permeability of 3.48?×?10?7?cm2/s which was lower than that of Nafion117.  相似文献   

19.
The effect of carbon type, carbon loading and microporous layer structure in the microporous layer on the performance of a direct methanol fuel cell (DMFC) at low temperature was investigated using electrochemical polarization techniques, electrochemical impedance spectroscopy, scanning electron microscope and other methods. Vulcan XC-72 carbon was found to be most suitable as a microporous layer for low temperature DMFC. Maximum fuel cell performance was obtained utilizing a microporous layer with carbon loading of 1.0 mg cm−2 when air was used as an oxidant. A membrane electrode assembly with 1.0 mg cm−2 Vulcan XC-72 carbon with 20 wt.% Teflon in the cathode and no microporous layer in the anode showed a maximum power density of 36.7 mW cm−2 at 35 °C under atmospheric pressure. The AC impedance study proved that a cell with a dissymmetrical microporous layer structure had lower internal resistance and mass transfer resistance, thus obtaining better performance.  相似文献   

20.
Pt-Pd catalysts were prepared by using the spontaneous deposition method and their characteristics were analyzed in a direct formic acid fuel cell (DFAFC). Effects of calcination temperature and atmosphere on the cell performance were investigated. The calcination temperatures were 300, 400 and 500 °C and the calcination atmospheres were air and nitrogen. The fuel cell with the catalyst calcined at 400 °C showed the best cell performance of 58.8 mW/cm2. The effect of calcination atmosphere on the overall performance of fuel cell was negligible. The fuel cell with catalyst calcined at air atmosphere showed high open circuit potential (OCP) of 0.812 V. Also the effects of anode and cathode catalyst loadings on the DFAFC performance using Pt-Pd (1: 1) catalyst were investigated to optimize the catalyst loading. The catalyst loading had a significant effect on the fuel cell performance. Especially, the fuel cell with anode catalyst loading of 4 mg/cm2 and cathode catalyst loading of 5 mg/cm2 showed the best power density of 64.7 mW/cm2 at current density of 200 mA/cm2. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号