首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design, fabrication and application of ceramic cutting tools are one of the important research topics in the field of metal cutting and advanced ceramic materials. In the present study, wear resistance of an advanced Al2O3/Ti(C,N)/SiC multiphase composite ceramic tool material have been studied when dry machining hardened tool steel and cast iron under different cutting conditions. Microstructures of the worn materials were observed with scanning electronic microscope to help analyze wear mechanisms. It is shown that when machining hardened tool steel at low speed wear mode of the kind of ceramic tool material is mainly flank wear with slight crater wear. The adhesion between tool and work piece is relatively weak. With the increase of cutting speed, cutting temperature increases consequently. As a result, the adhesion is intensified both in the crater area and flank face. The ceramic tool material has good wear resistance when machining grey cast iron with uniform flank wear. Wear mechanism is mainly abrasive wear at low cutting speed, while adhesion is intensified in the wear area at high cutting speed. Wear modes are dominantly rake face wear and flank wear in this case.  相似文献   

2.
In this paper, Al2O3/TiB2/SiCw ceramic cutting tools with different volume fraction of TiB2 particles and SiC whiskers were produced by hot pressing. The fundamental properties of these composite tool materials were examined. Machining tests with these ceramic tools were carried out on the Inconel718 nickel-based alloys. The tool wear rates and the cutting temperature were measured. The failure mechanisms of these ceramic tools were investigated and correlated to their mechanical properties. Results showed that the fracture toughness and hardness of the composite tool materials continuously increased with increasing SiC whisker content up to 30 vol.%. The relative density decreased with increasing SiC whisker content, the trend of the flexural strength being the same as that of the relative density. Cutting speeds were found to have a profound effect on the wear behaviors of these ceramic tools. The ceramic tools exhibited relative small flank and crater wear at cutting speed lower than 100 m/min, within further increasing of the cutting speed the flank and crater wear increased greatly. Cutting speeds less than 100 m/min were proved to be the best range for this kind of ceramic tool when machining Inconel718 nickel-based alloys. The composite tool materials with higher SiC whisker content showed more wear resistance. Abrasive wear was found to be the predominant flank wear mechanism. While the mechanisms responsible for the crater wear were determined to be adhesion and diffusion due to the high cutting temperature.  相似文献   

3.
An Al2O3/TiC ceramic cutting tool with the additions of CaF2 solid lubricant was produced by hot pressing. The fundamental properties of this ceramic cutting tool were examined. Dry machining tests were carried out on hardened steel and cast iron. The tool wear, the cutting forces, and the friction coefficient between the tool–chip interface were measured. It was shown that the friction coefficient at the tool–chip interface in dry cutting of hardened steel and cast iron with Al2O3/TiC/CaF2 ceramic tool was reduced compared with that of Al2O3/TiC tool without CaF2 solid lubricant. The mechanisms responsible were determined to be the formation of a self-lubricating film on the tool–chip interface, and the composition of this self-lubricating film was found to be mainly CaF2 solid lubricant, which was released and smeared on the wear track of the tool rake face, and acted as lubricating additive between the tool–chip sliding couple during machining processes. The appearance of this self-lubricating film contributed to the decrease of the friction coefficient. Cutting speed was found to have a profound effect on this self-lubricating behavior.  相似文献   

4.
Nanoscale and microscale textures with different geometrical characteristics were fabricated on the surface of the Al2O3/TiC ceramic tool, and molybdenum disulfide (MoS2) solid lubricants were burnished into the textures. The effect of the textures on the cutting performance was investigated using the textured self-lubricated tools and conventional tools in dry cutting tests. The tool wear, cutting force, cutting temperature, friction coefficient, surface roughness and chip topography were measured. Results show that the cutting force, cutting temperature, friction coefficient and tool wear of nanoscale and microscale textured self-lubricated tools are significantly reduced compared with the conventional tool, and the developed tool with wavy microscale textures on the rake face is the most effective in improving the cutting performance. The textured self-lubricated tools increase the surface roughness of machined workpiece, while they can reduce the vibration for a stable cutting and produce more uniform surface quality. The chip topography is changed by the textured self-lubricated tools. As a result, the nanoscale and microscale textured self-lubricated tools effectively improve the cutting performance of conventional Al2O3/TiC ceramic tool, and they are applicable to a stable dry cutting of the hardened steel.  相似文献   

5.
The main limitation on the use of nickel-base superalloys, such as INCONEL 718, is the difficulty in conventional-type machining. The use of high cutting speed to achieve both machining adiabatic conditions and high productivity is necessary for their applications. This non-conventional type machining results in a short life-span of tools, even for those expensive ceramic ones with reinforced SiC whiskers (SiCw) suitable for use at high cutting speeds. The aim of the paper is to present the results of a new idea proposed by the authors to obtain an increase in tool life at high cutting speed by minimizing the temperature effects on composite reinforcement mechanisms. The 2090 SiC whiskers reinforced A12O3 tools were CrN and (Ti,AI)N coated using the PVD technique, and comparative machining tests on INCONEL 718 were carried out using uncoated and coated tools. After machining, the tools were observed with a scanning electron microscope (SEM), and EDAX (X-ray) semiquantitative analyses were performed. The behaviour of the CrN and (Ti,AI)N layers using various cutting conditions was analysed and different wear mechanisms along the tool chip contact length were observed. The cause and the mechanisms of wear were deduced and mathematic models linking tool life with process parameters were suggested.  相似文献   

6.
An Al2O3-based composite ceramic tool material reinforced with WC microparticles and TiC nanoparticles was fabricated by using hot-pressing technique. The cutting performance, failure modes and mechanisms of the Al2O3/WC/TiC ceramic tool were investigated via continuous and intermittent turning of hardened AISI 1045 steel in comparison with those of an Al2O3/(W, Ti)C ceramic tool SG-4 and a cemented carbide tool YS8. Worn and fractured surfaces of the cutting tools were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results of continuous turning revealed that tool lifetime of the Al2O3/WC/TiC ceramic tool was higher than that of the SG-4 and YS8 tools at all the tested cutting speeds. As for the intermittent turning, tool life of the Al2O3/WC/TiC ceramic tool was equivalent to that of YS8, but shorter than that of the SG-4 at lower cutting speed (110 m/min). However, tool life of the Al2O3/WC/TiC ceramic tool increased when the cutting speed increased to 170 m/min, becoming much longer than that of the SG-4 and YS8 tools. The longer tool life of the Al2O3/WC/TiC composite ceramic tool was attributed to its synergistic strengthening/toughening mechanisms induced by the WC microparticles and TiC nanoparticles.  相似文献   

7.
Wear maps of a Si3N4 ceramic cutting tool for cutting 1045 plain carbon and 302 stainless steels are produced in this paper. Through the systematic turning tests, the optimum cutting regions were determined on the wear maps of a two-dimensional diagram of cutting speed and feed rate. They are important for selecting the appropriate cutting parameters for a ceramic tool when cutting different workpieces. The wear morphologies and wear mechanisms for the different regions were investigated by scanning electron microscopy (SEM) with energy dispersive analysis of x-ray (EDX), and the corresponding cutting temperature distributions were measured by a thermal video system. Based on the experiment results, the relationships between cutting conditions, cutting temperatures, and wear mechanisms were discussed in detail.  相似文献   

8.
Austenitic stainless steel AISI 321 is one of the most difficult-to-cut materials. In order to investigate the wear behavior of Si3N4 ceramic when cutting the stainless steel, wear tests are carried out on a pin-ondisk tribometer, which could simulate a realistic cutting process. Test results show that the wear of Si3N4 ceramic is mainly caused by adhesion between the rubbing surfaces and that the wear increases with load and speed. When oil is used for lubrication, the friction coefficient of the sliding pairs and the wear rate of the ceramic are reduced. A scanning electron microscope (SEM), an electron probe microanalyzer (EPMA), and an energy dispersive x-ray analyzer (EDXA) are used to examine the worn surfaces. The wear mechanisms of Si3N4 ceramic sliding against the stainless steel are discussed in detail.  相似文献   

9.
Alumina based ceramic cutting tool is an attractive alternative for carbide tools in the machining of steel in its hardened condition. These ceramic cutting tools can machine with high cutting speed and produce good surface finish. The wear mechanism of these ceramic cutting tools should be properly understood for greater utilization. Two types of ceramic cutting tools namely Ti[C,N] mixed alumina ceramic cutting tool and zirconia toughened alumina ceramic cutting tool are used for our investigation. The machinability of hardened steel was evaluated by measurements of tool wear, cutting forces and surface finish of the work piece. These alumina based ceramic cutting tool materials produce good surface finish in the machining of hardened steel. In this paper an attempt is made to analyse the important wear mechanisms like abrasive wear, adhesive wear and diffusion wear of these ceramic cutting tool materials and the performance of these ceramic cutting tools related to the surface finish is also discussed here.  相似文献   

10.
Ceramic tools have been widely used in the cutting of hard-to-machine materials, but the applications of solid ceramic milling cutters are limited due to their design and manufacturing restrictions. This research investigates the cutting performances of four solid ceramic end milling tools including Si3N4, Ti(C,N), SG4 and LT55 in machining hardened AISI H13 steel (HRC 60-62). The results show that the cutting forces of ceramic end milling tools are less than that of the referenced cemented carbide tool, and such ceramic tools of Si3N4, Ti(C,N) and LT55 produce better surface qualities and have longer tool lives. With excellent mechanical peoperties including hardness, bending srength and fracture toughness, the ceramic tool of Ti(C,N) presents the best cutting performance taking the cutting force, machined surface quality and tool life in consideration simultaneously. The research has proven the application feasibility of ceramic materials in the manufacture of solid tools. The solid ceramic end milling tools are geometric extensions for traditional ceramic tools and they can be used in machining hardened steels.  相似文献   

11.
Al_2O_3-TiB_2陶瓷刀具材料的切削性能研究   总被引:1,自引:0,他引:1  
邓建新  艾兴 《硬质合金》1994,11(4):222-225
本文实验研究了Al_2O_3-TiB_2陶瓷刀具LP1切削淬火钢和铸铁时的切削性能。结果表明:TiB2的含量对刀具的耐磨性有较大的影响.这种刀具材料的耐磨性能明显优于目前广泛应用的其它Al2O3系陶瓷刀具材料.  相似文献   

12.
A femtosecond pulsed laser (pulse width: 120 fs, wavelength: 800 nm and repetition rate: 500 Hz) was used for the pretreatment on the rake face of Al2O3/TiC ceramic cutting tools. The evolution of surface morphology of pretreated cutting tools irradiated with different pulse energies was measured by scanning electron microscope (SEM) and atomic force microscope (AFM). Dry cutting tests were carried out with these pretreated tools and conventional tools on hardened steel. The effect of pulse energy on the wear resistance of these pretreated tools was investigated. Results show that the cutting forces have no significant difference between laser pretreated tools and the conventional tool; the cutting temperatures of laser pretreated tools were slightly reduced compared with the conventional tool. Meanwhile, we found that the laser pretreated tools increased the adhesions of chips on the rake face, but they can significantly improve the wear resistance of the rake face; and laser pulse energy was found to have a profound effect on the wear resistance of the laser pretreated tools.  相似文献   

13.
Polycrystalline diamond (PCD) tools have gained increasing application in woodworking industry for the phenomenal tool life and cutting finish compared with carbide tools. In the paper, machining experiments with PCD tools were conducted to mill laminated flooring with Al2O3 overlay. Four kinds of PCD products with different original diamond grain sizes were used to fabricate the cutters. Wear volume was measured by optical microscopy and wear morphology was examined by SEM and optical microscopy.The experimental results show that the wear mechanisms of PCD tools, in the machining process, involve inter-granular wear and partial cleavage fracture. The microcracks in PCD tools are a key reason for the wear of tools. By comparing the flank wear, the experiments reveal that PCD tools with middle original diamond grain size have long tool life. The influences of original diamond grain size on cutting edge and wear properties have also been discussed in detail.  相似文献   

14.
Cutting performances of micro-textured WC-10Ni3Al cutting tools compared with micro-textured WC-8Co cutting tools in turning of Ti6Al4V was investigated in this study. Cutting forces, cutting temperature, and tool life based on the criterion of a 300 μm flank wear were measured. The wear tracks of the rake face and flank face for micro-textured WC-10Ni3Al cutting tools were analyzed. It is found that WC-10Ni3Al cutting tools had smaller heat damages during LST compared with WC-8Co cutting tools, which was benefit for avoiding premature tool failure during Ti6Al4V machining process. Micro-textures on the rake face could effectively reduce cutting forces, cutting temperature, adhesion on the rake face, and hence increase tool life, especially at higher cutting speed.  相似文献   

15.
For the development and introduction of new coated cutting tools (i.e. new combinations of cutting materials and hard coatings), it is necessary to carry out a number of studies with the purpose of optimizing the coatings composition and processing procedures, and also to test new tools under working conditions. The aim of this paper is to establish a common model for environmentally oriented quality management in the use and development of coated ceramic cutting tools with new coating systems. The paper also presents an investigation of the results of tribological and cutting properties of the coatings deposited with the PVD and CVD techniques on cutting inserts made from (Al2O3 + TiC) tool ceramics. Tests were carried out on ceramic inserts, uncoated and PVD or CVD-coated, with gradient, mono-, multi- (nano) layers and multicomponent hard wear resistant coatings composed of TiN, Ti(C, N), (Ti, Al)N, (Ti, AlSi)N and Al2O3 layers.  相似文献   

16.
Micro-blasting on PVD films has been documented, among others, as an efficient method for inducing compressive stresses, thus for increasing the coating hardness and potentially tool life of coated tools. Since contradictory results have been registered concerning the efficiency of wet micro-blasting on coated tools for improving the wear behaviour, the paper aims at explaining how this process can be successfully applied for post-treatment of PVD films. In this context, the employed conditions such as pressure and grain size affect significantly the wear resistance of the micro-blasted coated tools.In the described investigations, TiAlN coatings were post-treated through wet micro-blasting by Al2O3 abrasives of various grains' diameter. Abrasion mechanisms after micro-blasting were investigated by roughness measurements. Nanoindentations on micro-blasted film surfaces at various pressures revealed the influence of this process on coating superficial hardness. The related residual stress changes were estimated considering the film yield stress alterations, which were analytically determined, based on nanoindentation results. Nano-impact tests were conducted for investigating the effect of the developed film compressive stresses at certain micro-blasting pressures and grain sizes on the film's brittleness. To monitor film thickness and cutting edge radius changes of coatings subjected to micro-blasting, ball cratering tests and white light scans were carried out respectively. In this way, micro-blasting conditions for improving the film hardness, without revealing the substrate in the cutting edge region, were detected. Finally, the wear behaviour of coated and variously wet micro-blasted tools was investigated in milling of hardened steel.  相似文献   

17.
This paper concerns the fundamental cutting characteristics obtained in the turning of the pearlitic–ferritic nodular iron (EN-GJS-500-7 grade with UTS=500 MPa) when using carbide tools coated with single TiAlN and multilayer TiC/Ti(C,N)/Al2O3/TiN coatings, as well as silicon nitride (Si3N4) based ceramic tools. As a competitor, a P20 uncoated carbide grade was selected. The fundamental process readings include cutting and feed forces, the tool–chip interface temperature, Peclet number, friction coefficient and the tool–chip contact length as functions of cutting parameters. In particular, the measurements of cutting temperature were carried out using conventional tool–work thermocouple method and IR thermography. It is concluded based on many process characteristics that multilayer coated and ceramic tools can substantially improve the performance of nodular iron machining.  相似文献   

18.
This paper deals with an experimental and analytical investigation into the different factors which influence the temperature distribution on Al2O3---TiC ceramic tool rake face during machining of difficult-to-cut materials, such as case hardened AISI 1552 steel (60–65 Rc) and nickel-based superalloys (e.g. Inconel 718). The temperature distribution was predicted first using the finite element analysis. Temperature measurements on the tool rake face using a thermocouple based technique were performed and the results were verified using the finite element analysis. Experiments were then performed to study the effect of cutting parameters, different tool geometries, tool conditions, and workpiece materials on the cutting edge temperatures. Results presented in this paper indicate that for turning case hardened steel, increasing the cutting speed, feted, and depth of cut will increase the cutting edge temperature. On the other hand, increasing the tool nose radius, and angle of approach reduces the cutting edge temperature, while increasing the width of the tool chamfer will slightly increase the cutting ege temperature. As for the negative rake angle, it was found that there is an optimum value of rake angle where the cutting edge temperature was minimum. For the Inconel 718 material, it was found that the cutting edge temperature reached a minimum at a speed of 510 m/min, and feed of 1.25 mm/rev. However, the effect of the depth of cut and tool nose radius was almost the same as that determined in the turning of case hardened steel. It was also observed in turning Inconel 718 with ceramic tools that, cutting forces and different types of tool wear were reduced with increasing the feed.  相似文献   

19.
Polycrystalline diamond is widely used as a economic cutting material for machining non-ferrous materials such as aluminum. It is perceived that diamond cannot be used for cutting ferrous materials due to the high affinity of carbon to iron. Nevertheless, under certain conditions it is possible to use diamond materials for cutting ferrous metals. In order to avoid graphitization of the diamond matrix, it is necessary to keep the cutting temperature below the critical level of diamond graphitization. This paper presents the influence of a cryogenic CO2 coolant strategy on the cutting process using PCD tools for cutting high strength compacted graphite iron (CGI). Investigations show, that tool wear behavior strongly correlates with the cutting speed, the cutting forces, cutting temperatures, and surface roughness of the workpiece. The test results show, that the tool life of PCD for cutting cast iron is dependent on the diamond grain size, the binder material, and the cutting parameters.  相似文献   

20.
A new type of self-lubricating ceramic cutting tool material with the addition of metal coated solid lubricant powders was developed. Nickel coated CaF2 composite powders with core–shell structure were produced by electroless plating technique. The growth process of nickel coating on the solid lubricant CaF2 powders was analyzed. The as-prepared self-lubricating ceramic cutting tool material made by adding nickel coated CaF2 powders exhibited notable improvements in microstructure and mechanical properties, in comparison with the corresponding cutting tool material made by directly adding uncoated CaF2 powders. Cutting tests show that the new type of self-lubricating ceramic cutting tool has better antifriction property and wear resistance than the corresponding cutting tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号