首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, the hardfacing alloys with different measures of ferrotitanium (Fe-Ti), ferrovanadium (Fe-V), ferromolybdenum (Fe-Mo) and graphite were deposited on AISI 1020 steel substrates by shielded manual arc welding (SMAW). Fe-based hardfacing layers reinforced by carbide particles were produced. The thermodynamic analysis for carbide and effect of the carbide forming elements on the properties of hardfacing layers were also discussed. The experimental results showed that TiC-VC-Mo2C carbides could be synthesized by metallurgic reaction during SMAW process. Carbides with particle sizes in the range 1-3 μm are uniformly dispersed in the matrix. The hardfacing layer with good cracking resistance and high hardness could be obtained when the amounts of graphite, Fe-Ti, Fe-V and Fe-Mo were controlled within a range of 8-10%, 12-15%, 10-12% and 2-4%, respectively.  相似文献   

2.
采用钛铁、钼铁和石墨为激光熔覆粉末,利用激光多道搭接熔覆技术在碳钢基体上制备Fe-Ti-Mo-C复合涂层.利用X射线衍射仪、场发射扫描电镜、电子探针对涂层的相结构和显微组织进行了研究.用显微硬度计和滑动磨损试验机,对涂层的硬度和耐磨性能进行测试.结果表明,涂层中原位生成了(Ti,Mo)C复合碳化物.(Ti,Mo)C呈面心立方结构,晶格常数略小于TiC晶粒.随着原材料中钼铁加入量的增加,涂层显微组织由铁素体、珠光体向马氏体转变,显微硬度和耐磨性增加,但抗裂性能降低.  相似文献   

3.
In this paper, in situ synthesized TiC particles reinforced Fe-based surface composite coatings by multi-pass overlapping gas tungsten arc welding (GTAW) melting process employing a proper amount of graphite and ferrotitanium (FeTi) on AISI 1020 steel substrate was produced. The microstructure and wear properties of the composite coatings were investigated by means of an electron microprobe microanalysis (EPMA), X-ray diffractometer and wear tester. The results showed that the multi-pass overlapping GTAW melting surface composite coatings can be obtained under suitable welding parameters, and no crack and porosity are found in the tracks. The X-ray and EPMA results confirm that TiC particles can be formed via reaction of FeTi and graphite during multi-pass overlapping GTAW melting process. TiC particles present cubic and dendrite shape in the non-overlapping zone. It is found that there occurred TiC particles coarsening at the overlap regions, which can lead to detrimental effects on the hardness and wear performance. Composite coatings give a high hardness and excellent wear resistance; and the wear friction coefficient of the coating is less than that of the 1020 steel. As a result, multi-pass overlapping GTAW melting process can be used effectively for producing surface composite coatings with a pre-placed powder to improve wear resistance of the AISI 1020 steel.  相似文献   

4.
氩弧原位合成TiC颗粒增强Fe基复合层   总被引:9,自引:0,他引:9       下载免费PDF全文
通过在Fe基自熔合金粉末中添加一定比率的强碳化物形成元素Ti及石墨,采用氩弧熔敷法在中碳钢基体上制备原位形成的TiC颗粒增强Fe基合金复合涂层.利用扫描电镜、电子探针、X射线衍射和图像分析系统,对熔敷层显微组织及其影响因素进行了观察与分析.研究结果表明,利用氩弧熔敷技术,可以原位形成细小、弥散分布的TiC颗粒;TiC颗粒沿熔敷层深度呈梯度分布.通过调整预置涂层的厚度、熔敷工艺参数以及石墨的加入量,可以调整控制熔敷层的成形及组织与性能.  相似文献   

5.
Titanium carbide particles reinforced Fe-based surface composite coatings were fabricated by laser cladding using a 5 kW CO2 laser. The microstructure, phase structure and wear properties were investigated by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction, as well as dry sliding wear test. The results showed that TiC carbides were formed via in situ reaction between ferrotitanium and graphite in the molten pool during the laser-clad process. The morphology of TiC is mainly cubic and dendritic form; and the TiC carbides were distributed uniformly in the composite coating. The TiC/matrix interface was found to be free from cracks and deleterious phases. The coatings reinforced by TiC particles revealed higher wear resistance and lower friction coefficient than that of the substrate and FeCrBSi laser-clad coating.  相似文献   

6.
The aim of this study is to discuss the effect of microstructural development with different Ti contents in Fe-based hardfacing alloys. A series of Fe-Cr-C-Si-Mn-xTi alloy fillers was deposited on SS400 low carbon steel substrate using oscillating gas tungsten arc welding. The microstructure in the Fe-based hardfacing alloy without Ti content addition included: the primary γ, eutectic γ+(Fe,Cr)3C, eutectic γ+(Fe,Cr)2C and martensite. With increasing Ti contents, the microstructures showed the primary TiC carbide, γ phase and eutectic γ+(Fe,Cr,Ti)3C. The amount and size of TiC carbide in the hardfacing layers increased as the Ti content increased. However, the eutectic γ+(Fe,Cr,Ti)3C content decreased as the Ti content increased. According to the results of the hardness test, the lowest hardness value (HRC 54.93) was found with 0% wt% Ti and the highest hardness (HRC 60.29) was observed with 4.87 wt% Ti.  相似文献   

7.
埋弧堆焊TiC颗粒增强复合涂层的组织与性能   总被引:1,自引:0,他引:1  
以TiFe粉、Cr粉、Ni粉、Fe粉、胶体石墨等为原料,利用合金粉粒埋弧堆焊技术在Q235钢表面原位反应合成TiC颗粒增强Fe基复合涂层。利用SEM,XRD和EDS等分析了涂层的显微组织,并在室温干滑动磨损条件下测试该涂层的耐磨性能。结果表明:利用合金粉粒埋弧堆焊技术,可以原位合成粒径在2μm以下、弥散分布的TiC颗粒。涂层组织由TiC颗粒、马氏体和奥氏体构成。涂层平均显微硬度达601HV0.2,约是碳钢基体的3倍。由于TiC颗粒和马氏体的抗磨损性能使涂层具有优异的耐磨性能,因此涂层磨损质量约是基体金属的1/10。埋弧堆焊双层涂层与单层涂层相比,马氏体含量减少,奥氏体和TiC含量增加,耐磨性更好。  相似文献   

8.
CONVENTIONALLY,there have been many processes,such as thermal spray,chemical and physical vapordeposition,and detonation gun technique,fordepositing carbides on metals.In recent years,highenergy density processes such as laser surfaceengineering(LSE)techniques are researched to depositultrahard carbides coatings[l-5].However,the carbidesof Ti,V or W straightly deposited to base metal have aseries of problems such as easily cracking,badlybonding and being prone to disengage[6-8].Thesepr…  相似文献   

9.
Abstract

Different amounts of TiB2 powder were added to flux cores of wear resistant hardfacing flux cored wires for the preparation of new flux cored wires. Fe–Cr–C hardfacing alloys reinforced with TiB2 were produced by arc hardfacing. The microstructure, hardness and wear resistance behaviour of the hardfacing alloys were investigated using an optical micrograph, scanning electron micrograph (SEM), X-ray diffractometer, macrohardness tester, microhardness tester and abrasive wear tester. The results showed that, among the hardfacing alloys, a new hard phase, i.e. TiC–TiB2 composite compound particles, was formed and dispersed in the primary carbides and matrix structures. The TiC–TiB2 reinforced Fe–Cr–C hardfacing alloys imparted greater hardness and better wear resistance. The presence of TiC–TiB2 hard phase particles is the main reason for the improvement in hardness and wear resistance of Fe–Cr–C hardfacing alloys.  相似文献   

10.
激光原位合成TiB2-TiC颗粒增强铁基涂层   总被引:2,自引:0,他引:2       下载免费PDF全文
采用B4C,TiO2,石墨以及铁基粉末为激光熔覆材料,利用激光多道搭接熔覆技术在碳钢基体上制备TiB2-TiC颗粒增强铁基复合涂层.利用XRD,SEM对涂层的相结构和显微组织进行了研究.采用显微硬度计和滑动磨损试验机分别测试了涂层的硬度和耐磨性能.结果表明,激光熔覆过程B4C,TiO2和石墨反应生成了TiB2和TiC颗粒,并均匀分布在基体中.随着激光功率密度增加,涂层中TiC含量减少,甚至出现FeB脆性相.TiB2-TiC颗粒增强的涂层其硬度和耐磨性能优于基材45钢.  相似文献   

11.
含钛铁基耐磨复合材料的研制   总被引:2,自引:2,他引:0       下载免费PDF全文
为了研制一种铁基耐磨复合材料,采用等离子熔覆技术,通过调节铬含量制备多组Fe-Cr-Ti-C合金系统.借助SEM和XRD等分析手段对熔覆层组织和碳化物形貌进行分析.结果表明,熔覆层中随着铬含量的提高,基体组织由A+F向F及M转变;碳化物M7C3及TiC等硬质相的数量逐渐增多.此外研究了铬含量对熔覆层耐磨粒磨损性能的影响规律,熔覆层的耐磨性随着铬含量的增加而提高,当铬含量达到20.1%时,大量高硬度六边形M7C3复合物结合一定量的呈开花状、球状或团聚状TiC颗粒均匀弥散分布在具有较高强韧性的板条马氏体基体中,使得熔覆层具有最佳的耐磨性.  相似文献   

12.
TiC-VC免预热耐磨堆焊焊条   总被引:9,自引:4,他引:9       下载免费PDF全文
采用H0 8A焊芯 ,钛铁、钒铁、人造金红石和石墨等药皮组分 ,研制了新型耐磨、免预热堆焊焊条。通过扫描电镜 (SEM)、能谱分析 (EDAX)、磨粒磨损试验、焊条工艺性能试验以及硬度测试 ,系统地研究了焊条药皮组分对堆焊层耐磨性、抗裂性、工艺性能及堆焊层组织结构的影响。试验结果表明 ,通过电弧高温冶金反应 ,,药皮中Fe -Ti、Fe-V与石墨反应生成TiC、VC硬质相 ,并弥散分布于低碳马氏体 残余奥氏体的基体上 ,堆焊层具有良好的耐磨性和抗裂性 ,焊前不预热 ,连续堆焊堆焊层不产生裂纹。Fe-Ti、Fe -V与石墨的加入量对堆焊层耐磨性、硬度以及工艺性能影响很大 ,随着钛铁、钒铁、石墨量增加 ,堆焊层硬度、耐磨性增加。但药皮中钛铁超过 18%后焊条工艺性能变差 ,石墨超过 12 %后 ,堆焊层耐磨性降低  相似文献   

13.
FeAl based alloys with carbon and titanium additions were prepared using arc induction melting and their effect on wear behaviour was investigated using ball-on-disk technique. The experimental results showed that carbon addition to FeAl alloys results in formation of perovskite-type Fe3AlC0.5 carbide phase and graphite. Addition of Ti promotes the formation of TiC and Fe3AlC0.5 and prevents the formation of graphite in the alloy. Hardness and wear resistance of FeAl based alloys increase with increase in the volume fraction of carbides. The FeAl alloys containing Ti exhibited low wear rate and coefficient of friction. Examination of wear tracks revealed micro ploughing at a lower load of 5N. Thin surface flakes with traces of their detachment were observed at a higher load of 10N. It was also observed that presence of graphite in localized regions reduce the wear resistance of the alloy. The results are correlated with observed microstructure and hardness.  相似文献   

14.
Equipment of sugar cane plants and mineral extraction are submitted to severe abrasive wear conditions. Welded hardfacings are usually applied to repair this kind of damage, where commercial chromium/carbon-rich welding consumables have usually been employed. In the present work we investigated the microstructure of experimental hardfacings made by addition of residues (chips) collected from the machining of ASTM F67 (unalloyed Ti, grade 4) alloy. Mixtures with different carbide-formers (Cr/Nb ferro-alloys) were also tested. Two layers of ‘pure’ chips (Ti), chips plus Fe–Cr (Ti–Cr), and chips plus Fe–Nb (Ti–Nb) were applied on low-carbon steel specimens by the GTAW/TIG process. The microstructure of hardfacing layers was observed by optical and scanning electron microscopy (SEM) equipped with EDS microanalysis. The microstructural characterization has determined that carbide distributions change significantly with the chemical nature of the hardfacing. SEM observations coupled with EDS microanalysis have confirmed the formation of complex carbides within the metal weld, whose stoichiometry was determined by X-ray diffraction (XRD) analysis. Mixed carbides of MC type and some cementite have been found. As a result it was suggested that use of ASTM F67 chips as carbide formers for composition of welding consumables can contribute to improved wear resistance of hardfacings, if compared with traditional chromium-based hardfacings.  相似文献   

15.
原位合成(Ti,V)C增强铁基耐磨复合材料的研制   总被引:1,自引:1,他引:0       下载免费PDF全文
宗琳  郭宁  张小玲 《焊接学报》2017,38(8):10-14
采用激光熔覆技术,通过调节钒含量制备多组Fe-Ti-V-C合金系统. 借助金相、SEM和XRD等分析手段对熔覆层组织和碳化物形貌进行分析. 结果表明,熔覆层中随着钒含量的提高,基体组织由F向F+M转变;颗粒状复合碳化物(Ti,V)C的数量逐渐增多,当加入钒含量超过13.3%时,初生(Ti,V)C形态由颗粒状转变为花瓣状. 此外湿砂磨粒磨损试验表明,适量钒显著改善了熔覆层的耐磨性,当钒含量为13.3%时,大量颗粒状复合碳化物(Ti,V)C均匀弥散分布在铁素体及针状马氏体基体上,使得熔覆层具有最佳的耐磨性.  相似文献   

16.
Lü Xueqin 《中国焊接》2007,16(1):47-51
A new type of non-preheated hardfacing electrode was developed using H08A as the core and the coat contents including ferrotitaninm, ferrovanadium, graphite, rutile etc. The microstrnctures and properties of hardfacing metal were systematically researched. The results show the hardness of hardfacing metal increases with increasing of ferrotitanium, ferrovanadium, graphite in the coat, but the crack resistance and processing weldability become worse. The carbides formed by arc metallurgic reaction are uniformly dispersed in the matrix structure. The phases of hardfacing metal consist of α-Fe, γ-Fe, VC, TiC and Fe3 C.The carbides are compression aggregation of TiC and VC, and their appearances present irregular block. The matrix microstrncture of hardfacing metal is lath martensite. The hardfacing layers with better crack resistance and wearability are achieved and no visible cracks occur when using non-preheated electrode in continuous welding process. Hardness of hardfacing metal is more than 60HRC, and its relative wearability is five times of wearability of D667 electrode in abrasive wear test.  相似文献   

17.
在Q235D钢表面采用氩弧熔敷技术制备了Ti(C,N)-TiB2增强Ni60A基复合涂层。利用SEM对复合涂层的显微组织进行了分析,Ti(C,N)颗粒呈花瓣状和不规则的球状,TiB2颗粒呈短棒状和六面体,并对其组织结构进行表征。利用显微硬度计和摩擦磨损试验机,对复合涂层的性能进行了测试和分析。涂层表面平均硬度达到了1250 HV。摩擦磨损实验表明,涂层的磨损机制主要为磨粒磨损,伴随着粘着磨损。  相似文献   

18.
The effects of trace additions of multi-alloying elements (Ti,Nb,V,Mo) on carbides precipitation and ascast microstructure of eutectic high chromium cast iron containing 2.85wt.%C and 31.0wt.%Cr were i...  相似文献   

19.
把石墨粉末预涂在钛合金表面上,利用氩弧熔覆技术成功制备出原位自生TiC增强的金属基复合涂层。利用扫描电镜、X射线衍射仪和能谱仪分析了熔覆涂层的显微组织,探讨了增强相TiC的生成机制;利用显微硬度仪测试了复合涂层的显微硬度并用磨损试验机考察了其在室温干滑动磨损条件下的耐磨性能。结果表明,氩弧熔覆涂层组织均匀致密,原位自生TiC呈树枝晶和细碎的条状均匀地分布于整个涂层中;由TiC增强的复合涂层明显地改善了钛合金的表面硬度.平均硬度约为700HV0.2且沿层深方向呈梯度分布;涂层在室温干滑动磨损条件下的耐磨性明显优于基体,约为钛合金的10.5倍.  相似文献   

20.
以钛铁粉、高碳铬铁粉、硼铁粉、硅铁粉等为原料,利用等离子熔覆技术在Q235钢表面原位反应合成了与基材冶金结合Ti/Fe-Cr金属陶瓷复合涂层.利用SEM,XRD和EDS等分析了涂层的显微组织,并在室温于滑动磨损条件下测试了该涂层的耐磨性能.结果表明,涂层组织由TiC相、初生相Cr7C3、共晶(Cr,Fe)7C3和奥氏体...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号