首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
In this study, a combination of nanocomposite and multilayer coating design was investigated in an effort to reduce the coefficient of friction (COF) while maintaining good mechanical properties of the TiBCN coatings. The TiBCN:CNx coatings consist of TiBCN and CNx nanolayers which were deposited alternately by reactive sputtering a TiBC composite target (80 mol% TiB2 + 20 mol% TiC) and a graphite target in an Ar:N2 mixture using a pulsed closed field unbalanced magnetron sputtering system. Low angle X-ray diffraction and transmission electron microscopy characterizations confirmed that the coatings consist of different bilayer periods in a range of 3.5 to 7.0 nm. The TiBCN layers exhibited a nanocomposite structure, whereas the CNx layers were in an amorphous state. The mechanical properties and wear resistance of the TiBCN:CNx multilayer coatings were investigated using nanoindentation and ball-on-disk wear test. The TiBCN:CNx coatings exhibited high hardness in a range of 20-30 GPa. The highest hardness of 30 GPa was achieved in the coating with a bilayer period of 4.5 nm. A low COF of 0.17 sliding against a WC-Co ball was obtained at a bilayer period of 4.5 nm, which is much lower than those of the single layer TiBCN and TiBC nanocomposite coatings (0.55-0.7).  相似文献   

2.
利用非平衡磁控溅射离子镀技术在铝基轴承合金表面沉积Cp/Al Sn复合镀层。采用原子力显微镜(AFM)和扫描电子显微镜(SEM)对镀层的微观形貌进行观察,并对镀层的维氏硬度和摩擦学性能进行了测试。结果表明,非平衡磁控溅射离子镀Cp/Al Sn镀层,当碳靶电流在0.2~0.8 A范围内,镀层呈等轴结构生长,随碳靶电流增大,镀层晶粒逐渐细化,且致密度增加;在Cp/Al Sn复合镀层中,Al、Sn和C元素分别以单质形式存在,且随掺碳量增加,Cp/Al Sn复合镀层非晶特征逐渐增强;随碳靶电流增加,镀层硬度增加,摩擦系数减小,电流为0.8 A时,镀层硬度最高为230 HV0.025。摩擦系数最低为0.09,磨损率先减小后增大,碳靶电流为0.4 A时,镀层的磨损率最低为6.6×10-16m3/(N·m),其磨损机制逐渐由粘着磨损转变为磨粒磨损。  相似文献   

3.
Nanocrystallized Cr1−xAlxN films with various Al contents (0 to 68 at.%) were deposited by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS). The effects of aluminum content on the microstructure, mechanical and tribological properties of the Cr1−xAlxN films have been investigated. It was found that the hardness and elastic modulus of Cr1−xAlxN films increased with increasing Al contents in the films and reached the highest value of 36 GPa and 370 GPa, respectively, at an Al content of 58.5 at.%. Addition of Al beyond 64.0 at.% resulted in a change in crystal structure from B1 cubic to B4 hexagonal phase. The wear resistance improved gradually with the increase of Al in the Cr1−xAlxN films. A combination of the abrasive and adhesive wear mechanism was proposed based on the SEM and EDS analysis of the wear track. The steady state dry coefficient of friction measured against a WC ball for the Cr1−xAlxN films were in the range of 0.36-0.55, and the wear rate was in the 10− 6 mm3 N− 1 m− 1 range.  相似文献   

4.
Controlled ion bombardment of growing thin films can be used to modify and improve the film structure and properties. Recently, higher energetic species (up to hundreds eV) were found in the plasma by pulsing the target(s) in magnetron sputtering. In this study, an electrostatic quadrupole plasma mass spectrometer (EQP) has been used in a pulsed closed unbalanced magnetron sputtering (P-CFUBMS) system to investigate the effect of different pulsing parameters (frequency and reverse time) on the ion energies and ion fluxes in the intrinsic plasma during Cr-Al-N film deposition. It is confirmed that pulsing both magnetrons in this P-CFUBMS configuration had a large effect on both the ion energies and ion fluxes generated within the plasma, which are shown to be strongly dependent on pulsing frequency and duty cycle.The effect of pulsing to provide a wide range of ion energies and ion fluxes on the film microstructure, mechanical and tribological properties was investigated using nanoindentation, microtribometry, X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (TEM). In the current study, by taking −50 V substrate bias into consideration, it was found that total ion energies with controlled pulsing parameters to achieve moderate values (70-120 eV) can effectively increase the density and decrease the grain size of Cr-Al-N films. On the other hand, pulsing regimes that produce excessive total ion energy (∼ 200 eV) result in an increase in the residual strain, and point and lattice defects in the film, which will significantly decrease the toughness and tribological properties of the film. Under optimum pulsing conditions (100 kHz and 5.0 μs), Cr-Al-N films with a dense nanostructure (column grain size of 10-40 nm) of super hardness and good wear resistance (41 GPa, 0.099 H/E ratio, 0.46 COF, and a wear rate of 3.4 × 10− 6 mm3N− 1 m− 1) have been deposited using a controlled maximum ion energy bombardment of 122 eV at high ion flux.  相似文献   

5.
要满足航天器机械转动部件在恶劣工况下的工作,需研制高硬度、低摩擦系数的固体润滑薄膜。采用非平衡磁控溅射法分别制备了纯WS2薄膜、Ti掺杂WS2复合薄膜和La-Ti掺杂WS2复合薄膜。分析了薄膜的微观形貌、成分、硬度和摩擦学性能。结果表明,与纯WS2薄膜和Ti/WS2复合薄膜相比,La-Ti/WS2复合薄膜的微观结构更加致密。La-Ti/WS2复合薄膜的硬度H和弹性模量E也显著提高。此外,La-Ti/WS2复合薄膜的摩擦系数减小,并且H/E比值增大,La-Ti/WS2复合薄膜的磨损率降低。结果表明,La的掺杂有助于在摩擦接触表面形成稳定的转移膜,提高La-Ti/WS2复合薄膜的耐磨性和承载能力。  相似文献   

6.
A nanostructured Ni60-TiB2 composite coating (Ni60 is a brand of Ni-based self-fluxing alloy with a hardness of HRC60) was sprayed on steel substrate by high velocity oxy-fuel (HVOF) process using high energy ball milled powders. Its sliding wear resistance at room-temperature was evaluated by ball-on-disc testing. For comparison, conventional Ni60-TiB2 composite coating was prepared by HVOF using mechanically mixed Ni60 and TiB2 powders and tested under the same conditions. The results show that the nanostructured composite coating has excellent mechanical properties and sliding wear resistance due to the microstructural homogenization and the well preserved nanostructure characteristic of the ball milled powders. Adhesive and abrasive wears are found to be responsible for the wear down mechanisms of the nanostructured Ni60-TiB2 composite coating.  相似文献   

7.
The structural, elastic and electronic properties of Mg(Cu1−xZnx)2 alloys (x = 0, 0.25, 0.5,and 0.75) were investigated by means of first-principle calculations within the framework of density functional theory (DFT). The calculation results demonstrated that the partial substitution of Cu with Zn in MgCu2 leaded to an increase of lattice constants, and the optimized structural parameters were in very good agreement with the available experimental values. From energetic point of view, it was found that with increase of Zn content the structural stability of Mg(Cu1−xZnx)2 alloys decreased apparently. The single-crystal elastic constants were obtained by computing total energy as a function of strain, and then the bulk modulus B, shear modulus G, Young's modulus Y and Poisson's ratio ν of polycrystalline aggregates were derived. The calculated results showed that among the Mg(Cu1−xZnx)2 alloys, MgCuZn exhibited the largest stiffness, while Mg2Cu3Zn showed the best ductility. Finally, the electronic density of states (DOSs) and charge density distribution were further studied and discussed.  相似文献   

8.
Preparation of the Ti3Si1−xAlxC2 solid solution with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS) using TiC-, SiC-, and Al4C3-containing powder compacts. Due to the variation of reaction exothermicity with sample stoichiometry, the combustion temperature and reaction front velocity decreased with increasing Al content of Ti3Si1−xAlxC2 for the TiC- and Al4C3-added samples, but increased for the samples with SiC. In contrast to the formation of Ti3(Si,Al)C2 as the dominant phase for the TiC- and SiC-added samples, TiC was identified as the major constituent in the final products of samples adopting Al4C3. In addition, the evolution of Ti3(Si,Al)C2 was improved by increasing the Al content of the TiC- and SiC-added powder compacts, but deteriorated considerably upon the increase of Al4C3 in the Al4C3-containing sample.  相似文献   

9.
A novel technique to form Ti(C, N) on titanium, named as plasma electrolytic carbonitriding (PEC/N) on cathode was successful used to prepare TiCxN1 − x coating. The structure, composition and morphology of the coating were characterized by XRD, XPS and SEM, respectively. The results indicated that TiC0.3N0.7 as a new species appears on the surface of the titanium plate, and the thickness of the coating with porous surface morphology increases with the treated time. The blood compatibility of the TiC0.3N0.7 coating was evaluated by haemolysis ratios, dynamic blood clotting test, plasma recalcification time and platelet adhesion. The results indicated that the blood compatibility of the plasma-treated titanium with TiCxN1 − x coating is significantly improved as compared to the original titanium. Additionally, the results derived from measurements of hardness and corrosion indicated that the coating has excellent mechanical and corrosion-resistant properties.  相似文献   

10.
选用两种不同外皮的Fe Ni Cr Al/Cr3C2金属陶瓷粉芯丝材,采用高速电弧喷涂技术在45钢基体上制备涂层.采用增重法研究Fe Ni Cr Al/Cr3C2涂层在750℃时的氧化动力学曲线,利用金相显微镜、扫描电镜、X射线衍射仪研究涂层的显微组织结构和氧化产物,分析涂层在750℃时的抗高温氧化性能和氧化机理.结果表明,Fe NiCr Al/Cr3C2涂层的氧化动力学曲线呈抛物线型,涂层的增重明显低于20G钢,并且以304不锈钢为外皮的涂层的抗高温氧化性能明显优于以430不锈钢为外皮的涂层;涂层氧化后表面生成致密的氧化膜,阻塞氧的扩散通道,抑制氧化,起到保护作用.  相似文献   

11.
WC-(W,Cr)2C-Ni coating was prepared by high velocity oxy-fuel spraying (HVOF). The microstructure and phase composition of the as-sprayed coating and that after oxidation at high temperature were analyzed by means of scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The oxidation behavior of as-sprayed coating and starting powders was evaluated by thermogravimetry. Dry sliding friction and wear behavior of the WC-(W,Cr)2C-Ni coating sliding against Si3N4 ball at different temperatures (room temperature 20 °C and elevated temperature of 700 °C and 800 °C) was evaluated using an oscillating friction and wear tester. Besides, the microhardness and fracture toughness of the coating was also measured. Results show that sintering agglomerated WC-20 wt.%Cr-7 wt.%Ni powder is an effective method to prepare agglomerated and sintered WC-(W,Cr)2C-Ni composite powder. The excellent oxidation resistance of WC-(W,Cr)2C-Ni coating is mainly resulted from a double-decker shell-core microstructure formed in the coating. The composition of the outer shell is (W,Cr)2C phase and that of the inner shell is Cr3C2. During high-temperature friction and wear test, well remained hard WC phase in the WC-(W,Cr)2C-Ni coating can guarantee its good mechanical properties and wear resistance, and newly generated nano NiWO4, CrWO4 and Cr2WO6 particles can further improve these properties significantly.  相似文献   

12.
The surface pretreatments of the austenitic stainless steel and copper surfaces for the sol-gel coating were carried out by chemical, plasma electrolytic or CO2 cryoblasting techniques. With the austenitic stainless steel the smoothest surfaces were obtained with plasma electrolytic cleaning, after which the measured contact angles of water were clearly decreased revealing improved hydrophilicity. As well with the copper samples the smooth surface and improved hydrophilicity was obtained with the plasma electrolytic cleaning, but oxide layer formed to the copper surface immediately after the treatment. CO2 cryoblasting provided rough surface with wetting properties close to the original surface both for austenitic stainless steel and copper surfaces. CO2 cryoblasting provided best appearance for the copper surface because no oxidation happened with that treatment. XPS and SIMS studies showed that with the plasma electrolytic treatment the surface layer of the austenitic stainless steel enriched of chromium and the oxide layer formed on the surface was less than 10 nm thick. With the chemical cleaning and CO2 cryoblasting, the chromium enrichment to the stainless steel surface was less. However XPS and SIMS studies showed that chemical treatment provided thinner oxide layer to copper surface than plasma electrolytic treatment.  相似文献   

13.
高玉新  易剑  方淳 《表面技术》2014,43(5):29-32
目的在高速钢钻头表面电火花沉积Ti(C,N)/Al2O3复合涂层,以提高其切削性能。方法利用电火花沉积技术,以Ti(C,N)/Al2O3作为电极材料,在高速钢钻头表面制备Ti(C,N)/Al2O3涂层,考察涂层的物相组成、组织形貌及横截面硬度分布,并进行切削试验。结果涂层组织均匀,厚度约32~36μm,物相主要为C0.3N0.7Ti,Al2O3,AlTi3,Fe7W6,Fe4N,TiN和AlN,平均硬度是基体高速钢的2.6倍。结论在高速钢钻头表面制备Ti(C,N)/Al2O3涂层可以提高刀具的切削性能,延长其使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号