首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A semi-empirical model was developed to predict the breakthrough curves of moisture adsorption on silica gel under different operating conditions. The model requires only the basic physical and transfer properties of the flowing gas stream. Experimental breakthrough curves were determined in this study for correlating some model parameters. These dynamic experiments were carried out with different values of the gas velocity, the inlet humidity, and the properties of the adsorbent. The breakthrough curves of the modified silica gel with neutron flux in a previous study were used to verify the proposed model. It is feasible to develop a single adsorption model to simulate the fixed-bed breakthrough curves for original and modified silica gels. The results show that the complex breakthrough curves can be predicted and are in very good agreement with the experimental data.  相似文献   

2.
Plasma treatments are used widely in surface modification of thin films and membranes. A similar treatment method was used for granular silica gel by using both argon and oxygen plasma. The surface properties, such as contact angle of water, pore diameter, and BET surface area, and the adsorption breakthrough curves for water were obtained on the plasma-treated silica gel. The contact angle of water decreased rapidly and then remained approximately constant during the plasma treatment. This indicated that argon- or oxygen-plasma treatment made the silica gel surface more hydrophilic. The increase in BET surface area of the plasma-treated silica gels was 13 to 15%. The experimental breakthrough curves showed that modification not only increased the effective surface area and active sites but also reduced the mass transfer resistance. The time for breakthrough increased by about 4 minutes when either argon- or oxygen-plasma treated silica gels were compared to the untreated one. The amount of moisture adsorbed by the modified silica gel as calculated from the breakthrough curve was increased by 18% compared to the untreated sample.  相似文献   

3.
Plasma treatments are used widely in surface modification of thin films and membranes. A similar treatment method was used for granular silica gel by using both argon and oxygen plasma. The surface properties, such as contact angle of water, pore diameter, and BET surface area, and the adsorption breakthrough curves for water were obtained on the plasma-treated silica gel. The contact angle of water decreased rapidly and then remained approximately constant during the plasma treatment. This indicated that argon- or oxygen-plasma treatment made the silica gel surface more hydrophilic. The increase in BET surface area of the plasma-treated silica gels was 13 to 15%. The experimental breakthrough curves showed that modification not only increased the effective surface area and active sites but also reduced the mass transfer resistance. The time for breakthrough increased by about 4 minutes when either argon- or oxygen-plasma treated silica gels were compared to the untreated one. The amount of moisture adsorbed by the modified silica gel as calculated from the breakthrough curve was increased by 18% compared to the untreated sample.  相似文献   

4.
Adsorption of carbon dioxide using polyethyleneimine modified silica gel   总被引:1,自引:0,他引:1  
To find an ideal adsorbent for carbon dioxide capture, a new polyethyleneimine modified silica gel material was synthesized with a simple procedure. Three silica gel materials with various particle sizes (15, 25 and 40–63 μm) were prepared and functionalized with polyethyleneimine. The carbon dioxide adsorption amounts of modified silica gel and non-modified silica gel were calculated using a mass balance equation at three different temperatures (298.15, 308.15 and 318.15 K), respectively, and the influence of gas pressure and particle size on adsorption was discussed. Experimental data showed that the carbon dioxide adsorption capacity of modified silica gel was better than non-modified silica gel, and the adsorption capacity gradually decreased with increasing particle size. The smaller particle size (15 μm) PEI modified silica gel had the largest adsorption capacity, at 298.15 K, and the adsorption amounts of various particle sizes of PEI-silica better fit the Langmuir isotherm model.  相似文献   

5.
《Drying Technology》2012,30(10):1062-1071
A nonisothermal, nonequilibrium mathematical model was developed to theoretically analyze adsorptive drying of gaseous mixtures containing water and volatile organic compounds (VOCs). The analysis concerns a four-bed cyclic temperature swing adsorption (TSA) system. The two fixed beds are formed of silica gel primarily as the water vapor adsorbent. The other two consist of activated carbon as the adsorbent of the organic component (e.g., benzene, isopropanol). In the model, possible insignificant interactions among the VOCs and water during adsorption and desorption were neglected. The following parameters were considered to study their effect on the process efficiency: relative humidity of the inlet gas, temperature of the purge gas, and height of the adsorbent beds. Simulation results showed that both the shape of the adsorption isotherm and heat effects played an important role in the breakthrough behavior of water vapor adsorption on silica gel. The model accurately simulated experimental data taken from literature.  相似文献   

6.
Prior to the technical use of natural gas, toxic and corrosive components need to be removed. This work provides results from dynamic fixed‐bed experiments for the adsorption of sulfurous compounds, CO2 and H2O from carrier gas (CH4 or N2) on two adsorbents (zeolite 5A, silica‐alumina‐gel) used in industrial applications. The breakthrough curves were measured at ambient conditions (298 K, 1.3 bar) in a trace level concentration range up to 2000 mol‐ppm. Adsorption isotherms were derived using mass balances and a simple linear driving force model was fitted to the curves. Good agreement of experimental data and model calculation was obtained.  相似文献   

7.
A new technique of using ozone for water treatment is presented. This new technique consists of using a three-step-process composed firstly of ozone adsorption on an appropriate adsorbent, secondly water treatment, and thirdly regeneration of the adsorbent. Results regarding ozone adsorption (the first step) are presented in this paper. Different types of silica gel and a type of TiO2 have been tested for ozone adsorption. It was found that the physical characteristics of the silica gel affect its capacity for ozone. Titanium dioxide has shown ozone decomposition instead of adsorption as it contains Lewis acid sites. An exponential decrease of the silica gel capacity with its moisture content has been found. Linear isotherms in the range of ozone concentrations less than 100?g/m3 NTP have been found. A particle diffusion model with linear equilibrium isotherm has been used to model the breakthrough curves in fixed bed columns.  相似文献   

8.
改性活性炭吸附H_2S总传质系数的测定及动力学研究   总被引:1,自引:0,他引:1  
对H_2S-CO_2混合气在改性活性炭床层上的等温吸附过程进行了研究。建立了吸附数学模型,并给出数值解。由实验测得了上述体系的吸附穿透曲线,并与计算值加以比较。  相似文献   

9.
Silica gels that were made humidity indicating by impregnation of CoCl2 were used for air drying in isothermal packed column. The effects of type of silica gel, packing height, particle size and air flow rate on breakthrough curves were studied. The breakthrough curves predicted by Rasmuson and Neretniek's analytical solution were in good agreement with experimental data.  相似文献   

10.
高宇翔  周磊 《广东化工》2012,39(7):1-2,18
研究了对二甲苯在活性炭固定床上的吸附动力学。考察了初始浓度、气体流量、床层长度等因素对吸附透过曲线的影响。同时,采用Yoon—Nelson模型对吸附透过曲线进行线性回归分析。实验结果表明,随着初始浓度的增大,透过时间缩短,吸附量增大:气体流最对透过曲线的形状影响不大:床层长度基本不影响透过曲线;Yoon-Nelson模型可以较好的模拟固定床吸附过程。  相似文献   

11.
12.
Silica gels that were made humidity indicating by impregnation of CoCl2 were used for air drying in isothermal packed column. The effects of type of silica gel, packing height, particle size and air flow rate on breakthrough curves were studied. The breakthrough curves predicted by Rasmuson and Neretniek's analytical solution were in good agreement with experimental data.  相似文献   

13.
采用浸渍沉积法制得钛改性硅胶块体吸附剂.对块体吸附剂的孔结构进行表征;考察了改性硅胶吸附剂动、静态除湿性能以及在吸附/脱附过程中湿度场、温度场的变化.结果表明,改性后的硅胶,其微孔、中孔孔径有所减少,而孔容和比表面显著增大;钛改性硅胶的吸附性能好于硅胶,而脱附能力劣于硅胶;由于钛改性硅胶产生更多的吸附热,吸附时出口气流温度略高于硅胶,而脱附时正好相反.  相似文献   

14.
The effects of capillary condensation on the adsorption and thermal desorption dynamics of water in zeolite 13X beds and layered beds with zeolite 13X/silica gel or zeolite 13X/alumina were experimentally and theoretically studied. As the equilibrium isotherm of water on zeolite 13X pellet was found to be most favorable at a low relative humidity and indicated capillary condensation at a high relative humidity, it was possible to construct a non-isothermal model that included capillary condensation and that could successfully predict plateaus of temperature and concentration profiles in thermal regeneration. In adsorption breakthrough, by using a feed in the capillary condensation range of the isotherm on zeolite 13X, the breakthrough curve showed a shock wave in the low concentration and a proportionate pattern in the high concentration. In thermal desorption breakthrough, the desorbed water at the upper part of the bed was re-adsorbed at the lower part of the bed, and that re-adsorption mainly occurred in the capillary condensation range of the isotherm. Therefore, even though an adsorption was performed at a feed in the favorable range of the isotherm, and could be well predicted with type I isotherm, its desorption dynamics should be predicted by using the isotherm model with its consideration of capillary condensation. The layered bed with silica gel or alumina did not have any advantage over the zeolite 13X bed with respect to adsorption breakthrough performance. However, compared to the zeolite 13X bed, the complete regeneration time in the layered bed was drastically shortened due to a greater variation of the amount of equilibrium adsorption of water under temperature on both silica gel and alumina. In addition, since an increase in temperature led to a greater decrease of the amount of equilibrium adsorption of water on silica gel than on alumina, a layered bed with silica gel obviously could be regenerated more efficiently than a layered bed with alumina.  相似文献   

15.
A theoretical study has been made for simulating the dynamic behavior of non-ideal gas mixtures in an isothermal fixed-bed adsorber. A mathematical model was developed which takes into account the non-ideality of adsorbable species on the adsorbed phase under equilibrium. The model is based on both the real adsorbed solution theory (RAST), which incorporates the activity coefficients in the multicomponent isotherm equations to account for the deviations from ideality, and the linear driving force (LDF) model for representing diffusion resistance inside the adsorbent particles. To describe the effect of non-ideal adsorption equilibrium of gas mixtures on the breakthrough curves, we considered several model mixtures of binary and ternary components which exhibit non-ideal behavior with azeotropic crossovers in the composition domains at equilibrium. Sample calculations of a fixed-bed adsorption were done with various inlet gas compositions of binary and ternary mixtures, respectively, at a fixed total concentration. From the calculation results, it was shown that the order of breakthrough curves could be changed at a certain value of inlet gas composition ratio. This result implies that the dynamic behaviors of fixed-bed adsorption are greatly influenced by multicomponent equilibrium models. Furthermore, the reversal phenomenon of breakthrough curves could not be simulated by the ideal adsorbed solution theory (IAST).  相似文献   

16.
In the current study, hydrogen fluoride (HF) adsorption onto the sodium fluoride pellets is modeled. For this purpose a two-dimensional, non-isothermal model was developed and the governing equations were solved numerically. The contributions of diffusion transport in axial and radial directions also were considered in mathematical formulations. The model results of effluent concentration and breakthrough curves of HF were compared with the experimental data obtained in a lab-scale adsorption unit, reported in our previous work [1]. The results indicate while the feed gas velocity decreases, the HF adsorption capacity on NaF is significantly enhanced and there is a delay in breakthrough time. The adsorption capacity of HF on NaF decreases slightly when inlet HF concentration increases. Moreover, the model results were compared with the obtained results from a one-dimension model. This comparison indicates that one-dimensional model can well predict the HF dynamic adsorption behavior for lab-scale fixed beds. Comparing the experimental breakthrough curves of HF adsorption on NaF pellets with the model results shows the ability and accuracy of the model with maximum 7.82% errors.  相似文献   

17.
18.
19.
在原油储运过程中挥发的H2S这种恶臭气体不但危害人体健康,还对环境造成很大的污染。文章提出了采用活性炭吸附脱除原油挥发气中H2S的工艺。从理论上探讨了活性炭脱硫机理及固定床内吸附传质动力学,并且建立了活性炭吸附H2S的固定床脱硫反应器数学模型,采用COMSOL Multiphysics软件求解数学模型以预测穿透曲线。同时进行了实验研究,并根据实验数据绘出了穿透曲线,且与模型计算结果进行了比较,二者吻合较好。还进一步探讨了空速、温度和原料气含量对吸附硫容的影响。  相似文献   

20.
相对湿度对甲醛在改性活性炭上吸附的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号