首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
An all‐solid‐state flexible generator–capacitor polymer composite film converts low‐frequency biomechanical energy into stored electric energy. This design, which combines the functionality of a generator with a capacitor, is realized by employing poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) in the simultaneous dual role of piezoelectric generator and polymer matrices of the flexible capacitor. Proper surface modification of the reduced graphene oxide (rGO) fillers in the polymeric matrices is indispensable in achieving the superior energy storage performance of the composite film. The heightened dielectric performance stems from enhanced compatibility of the rGO fillers and PVDF‐HFP matrices, and a microcapacitor model properly explains the dielectric behaviors. A device that is easily fabricated using our film allows timely decoupled motion energy harvest and output of the motion‐generated electricity. This report opens new design possibilities in the fields of motion sensors, information storage and high‐voltage output by accumulating low‐frequency random biological motions.  相似文献   

2.
The finding of an extremely large magnetoresistance effect on silicon based p–n junction with vertical geometry over a wide range of temperatures and magnetic fields is reported. A 2500% magnetoresistance ratio of the Si p–n junction is observed at room temperature with a magnetic field of 5 T and the applied bias voltage of only 6 V, while a magnetoresistance ratio of 25 000% is achieved at 100 K. The current‐voltage (I–V) behaviors under various external magnetic fields obey an exponential relationship, and the magnetoresistance effect is significantly enhanced by both contributions of the electric field inhomogeneity and carrier concentrations variation. Theoretical analysis using classical p–n junction transport equation is adapted to describe the I–V curves of the p–n junction at different magnetic fields and reveals that the large magnetoresistance effect origins from a change of space‐charge region in the p–n junction induced by external magnetic field. The results indicate that the conventional p–n junction is proposed to be used as a multifunctional material based on the interplay between electronic and magnetic response, which is significant for future magneto‐electronics in the semiconductor industry.  相似文献   

3.
Converting environmental “waste energies” into electricity via a natural process is an ideal strategy for environmental energy harvesting and supplying power for distributed energy‐consuming devices. This paper reports that evaporation‐driven water flow within an all‐printed porous carbon film can reliably generate sustainable voltage up to 1 V with a power density of ≈8.1 µW cm?3 under ambient conditions. The output performance of the device can be easily scaled up and used to power low‐power consumption electronic devices or for energy storage. Furthermore, the device is successfully used without electric storage as a direct power source for electrodeposition of silver microstructures. Because of the ubiquity of water evaporation in nature and the low cost of materials involved, the study presents a novel avenue to harvest ambient energy and has potential applications in low‐cost, green, self‐powered devices and systems.  相似文献   

4.
This article focuses on ion transport through nanoporous systems with special emphasis on rectification phenomena. The effect of ion‐current rectification is observed as asymmetric current–voltage (I–V) curves, with the current recorded for one voltage polarity higher than the current recorded for the same absolute value of voltage of opposite polarity. This diode‐like I–V curve indicates that there is a preferential direction for ion flow. Experimental evidence that ion‐current rectification is inherent to asymmetric, e.g., tapered, nanoporous systems with excess surface charge is provided and discussed. The fabrication and operation of asymmetric polymer nanopores, gold nanotubes, glass nanocapillaries, and silicon nanopores are presented. The possibility of tuning the direction and extent of rectification is discussed in detail. Theoretical models that have been developed to explain the ion‐current rectification effect are also presented.  相似文献   

5.
Directed nanoparticle self‐organization and two‐photon polymerization are combined to enable three‐dimensional soft‐magnetic microactuators with complex shapes and shape‐independent magnetic properties. Based on the proposed approach, single and double twist‐type swimming microrobots with programmed magnetic anisotropy are demonstrated, and their swimming properties in DI‐water are characterized. The fabricated devices are actuated using weak rotating magnetic fields and are capable of performing wobble‐free corkscrew propulsion. Single twist‐type actuators possess an increase in surface area in excess of 150% over helical actuators with similar feature size without compromising the forward velocity of over one body length per second. A generic and facile combination of glycine grafting and subsequent protein immobilization exploits the actuator's increased surface area, providing for a swimming microrobotic platform with enhanced load capacity desirable for future biomedical applications. Successful surface modification is confirmed by FITC fluorescence.  相似文献   

6.
Mobile sub‐millimeter micro‐robots have demonstrated untethered motion and transport of cargo in remote, confined or enclosed environments. However, limited by simple design and actuation, they lack remotely‐actuated on‐board mechanisms required to perform complex tasks such as object assembly. A flexible patterned magnetic material which allows internal actuation, resulting in a mobile micro‐gripper which is driven and actuated by magnetic fields, is introduced here. By remotely controlling the magnetization direction of each micro‐gripper arm, a gripping motion which can be combined with locomotion for precise transport, orientation, and programmable three‐dimensional assembly of micro‐parts in remote environments is demonstrated. This allows the creation of out‐of‐plane 3D structures and mechanisms made from several building blocks. Using multiple magnetic materials in each micro‐gripper, the addressable actuation of gripper teams for parallel, distributed operation is also demonstrated. These mobile micro‐grippers can potentially be applied to 3D assembly of heterogeneous meta‐materials, construction of medical devices inside the human body, the study of biological systems in micro‐fluidic channels, 3D micro‐device prototyping or desktop micro‐factories.  相似文献   

7.
Precise timing and dosing of potent small‐molecule drugs carries significant potential for effective pharmaceutical management of disorders that exhibit time‐varying therapeutic windows such as epilepsy. This study demonstrates the use of alumina‐coated nanoporous gold (np‐Au) thin film electrodes for iontophoretic release of fluorescein as a small‐molecule drug surrogate with picogram dosing and a few seconds temporal resolution. A custom microfluidic platform is engineered to trigger molecular release from an integrated np‐Au chip and monitor the resulting time‐varying fluorescein concentration. Following a systematic study of the influence of applied voltage on loading capacity and release kinetics, a LabVIEW‐based closed‐loop control interface is employed to demonstrate voltage‐gated fluorescein release with preprogrammed arbitrary concentrations waveforms.  相似文献   

8.
Batteries and supercapacitors are critical devices for electrical energy storage with wide applications from portable electronics to transportation and grid. However, rechargeable batteries are typically limited in power density, while supercapacitors suffer low energy density. Here, a novel symmetric Na‐ion pseudocapacitor with a power density exceeding 5.4 kW kg?1 at 11.7 A g?1, a cycling life retention of 64.5% after 10 000 cycles at 1.17 A g?1, and an energy density of 26 Wh kg?1 at 0.585 A g?1 is reported. Such a device operates on redox reactions occurring on both electrodes with an identical active material, viz., Na3V2(PO4)3 encapsulated inside nanoporous carbon. This device, in a full‐cell scale utilizing highly reversible and high‐rate Na‐ion intercalational pseudocapacitance, can bridge the performance gap between batteries and supercapacitors. The characteristics of the device and the potentially low‐cost production make it attractive for hybrid electric vehicles and low‐maintenance energy storage systems.  相似文献   

9.
Composition‐controlled fabrication of bimetallic catalysts is of significance in electrochemical energy conversion and storage. A novel nanoporous Pt‐Cu bimetallic catalyst with a Pt skin and a Pt‐Cu core, fabricated by electrochemically dealloying a bulk Pt‐Cu binary alloy using a potential‐controlled approach, is reported. The Pt/Cu ratio of the dealloyed nanoporous catalyst can be readily adjusted in a wide composition range by only controlling dealloying potential. The electro‐catalytic performance of the nanoporous Pt‐Cu catalyst shows evident dependence on Pt/Cu ratio although the surfaces of all the nanoporous catalysts are characterized to be covered by pure Pt. With optimal compositions, the dealloyed nanoporous Pt‐Cu catalyst possesses enhanced electrocatalytic activities toward oxygen reduction reaction and formic acid oxidation in comparison with the commercial Pt/C catalyst.  相似文献   

10.
Traditional dynamic adaptive materials rely on an atomic/molecular mechanism of phase transition to induce macroscopic switch of properties, but only a small number of these materials and a limited responsive repertoire are available. Here, liquid as the adaptive component is utilized to realize responsive functions. Paired with a porous matrix that can be put in motion by an actuated dielectric elastomer film, the uncontrolled global flow of liquid is broken down to well‐defined reconfigurable localized flow within the pores and conforms to the network deformation. A detailed theoretical and experimental study of such a dynamically actuated liquid‐infused poroelastic film is discussed. This system demonstrates its ability to generate tunable surface wettability that can precisely control droplet dynamics from complete pinning, to fast sliding, and even more complex motions such as droplet oscillation, jetting, and mixing. This system also allows for repeated and seamless switch among these different droplet manipulations. These are desired properties in many applications such as reflective display, lab‐on‐a‐chip, optical device, dynamic measurements, energy harvesting, and others.  相似文献   

11.
This paper describes a totally electrochemical process for the fabrication and functionalization of high‐surface‐area, nanoporous gold films. The fabrication process involves the electrodeposition of a binary gold–zinc alloy at gold wires, followed by subsequent electrochemical dealloying of the less noble component zinc from the surface. Both the deposition and dealloying steps are conducted in a single low‐temperature bath of 40.0–60.0 mol‐% zinc chloride–1‐ethyl‐3‐methylimidazolium chloride ionic liquid at 120 °C without using any other corrosive acids or bases. The porous structure and morphology of the nanostructured gold film could be controlled by electrochemical variation of the composition of the Au–Zn surface alloy. It is demonstrated that the nanoporous gold surface can be successfully functionalized with self‐assembled monolayers of L ‐cysteine. Such functionalization greatly improves the utility of the nanoporous gold, as is demonstrated in the sensitive and selective determination of Cu(II ).  相似文献   

12.
The effects of the surface energy of polymer gate dielectrics on pentacene morphology and the electrical properties of pentacene field‐effect transistors (FETs) are reported, using surface‐energy‐controllable poly(imide‐siloxane)s as gate‐dielectric layers. The surface energy of gate dielectrics strongly influences the pentacene film morphology and growth mode, producing Stranski–Krastanov growth with large and dendritic grains at high surface energy and three‐dimensional island growth with small grains at low surface energy. In spite of the small grain size (≈ 300 nm) and decreased ordering of pentacene molecules vertical to the gate dielectric with low surface energy, the mobility of FETs with a low‐surface‐energy gate dielectric is larger by a factor of about five, compared to their high‐surface‐energy counterparts. In pentacene growth on the low‐surface‐energy gate dielectric, interconnection between grains is observed and gradual lateral growth of grains causes the vacant space between grains to be filled. Hence, the higher mobility of the FETs with low‐surface‐energy gate dielectrics can be achieved by interconnection and tight packing between pentacene grains. On the other hand, the high‐surface‐energy dielectric forms the first pentacene layer with some voids and then successive, incomplete layers over the first, which can limit the transport of charge carriers and cause lower carrier mobility, in spite of the formation of large grains (≈ 1.3 μm) in a thicker pentacene film.  相似文献   

13.
This paper presents a simple process to integrate thin‐film inductors with a bottom NiFe magnetic core. NiFe thin films with a thickness of 2 to 3 μm were deposited by sputtering. A polyimide buffer layer and shadow mask were used to relax the stress of the NiFe films. The fabricated double spiral thin‐film inductor showed an inductance of 0.49 μH and a Q factor of 4.8 at 8 MHz. The DC‐DC converter with the monolithically integrated thin‐film inductor showed comparable performances to those with sandwiched magnetic layers. We simplified the integration process by eliminating the planarization process for the top magnetic core. The efficiency of the DC‐DC converter with the monolithic thin‐film inductor was 72% when the input voltage and output voltage were 3.5 V and 6 V, respectively, at an operating frequency of 8 MHz.  相似文献   

14.
A novel three‐electrode electrolyte supercapacitor (electric double‐layer capacitor [EDLC]) architecture in which a symmetrical interdigital “working” two‐electrode micro‐supercapacitor array (W‐Cap) is paired with a third “gate” electrode that reversibly depletes/injects electrolyte ions into the system controlling the “working” capacity effectively is described. All three electrodes are based on precursor‐derived nanoporous carbons with well‐defined specific surface area (735 m2 g?1). The interdigitated architecture of the W‐Cap is precisely manufactured using 3D printing. The W‐Cap operating with a proton conducting PVA/H2SO4‐hydrogel electrolyte and high capacitance (6.9 mF cm?2) can be repeatedly switched “on” and “off”. By applying a low DC bias potential (?0.5 V) at the gate electrode, the AC electroadsorption in the coupled interdigital nanoporous carbon electrodes of the W‐Cap is effectively suppressed leading to a stark capacity drop by two orders of magnitude from an “on” to an “off” state. The switchable micro‐supercapacitor is the first of its kind. This general concept is suitable for implementing a broad range of nanoporous materials and advanced electrolytes expanding its functions and applications in future. The integration of intelligent functions into EDLC devices has extensive implications for diverse areas such as capacitive energy management, microelectronics, iontronics, and neuromodulation.  相似文献   

15.
A dye‐sensitized solar cell (DSC) made of nanoporous ZnO film on aluminum‐doped zinc oxide (ZnO/AZO) transparent substrate has higher solar‐to‐electric energy conversion efficiency than a DSC consisting of nanoporous ZnO film deposited on conventional fluorine‐doped tin oxide (ZnO/FTO) transparent substrate. The ZnO/AZO DSC gave an overall conversion efficiency of 7.2% whereas the ZnO/FTO yielded a conversion efficiency of 4.5%. The film‐substrate orientation and higher light harvesting of the nanoporous ZnO film on the AZO after heating in air are mainly attributed to the higher energy conversion efficiency of the ZnO/AZO DSC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Voltage control of magnetism through electric field‐induced oxygen motion (magneto‐ionics) could represent a significant breakthrough in the pursuit for new strategies to enhance energy efficiency in magnetically actuated devices. Boosting the induced changes in magnetization, magneto‐ionic rates and cyclability continue to be key challenges to turn magneto‐ionics into real applications. Here, it is demonstrated that room‐temperature magneto‐ionic effects in electrolyte‐gated paramagnetic Co3O4 films can be largely increased both in terms of generated magnetization (6 times larger) and speed (35 times faster) if the electric field is applied using an electrochemical capacitor configuration (utilizing an underlying conducting buffer layer) instead of placing the electric contacts at the side of the semiconductor (electric‐double‐layer transistor‐like configuration). This is due to the greater uniformity and strength of the electric field in the capacitor design. These results are appealing to widen the use of ion migration in technological applications such as neuromorphic computing or iontronics in general.  相似文献   

17.
Extensive research efforts have been recently devoted to the development of self‐driven electrocatalytic water‐splitting systems to generate clean hydrogen chemical fuels. Currently, self‐driven electrocatalytic water‐splitting devices are powered by solar cells, which operate intermittently, or by aqueous batteries, which deliver stored electric power, leading to high operating costs and environmental pollution. Thus, a fully solar‐powered uninterrupted overall water‐splitting system is greatly desirable. Here, the solar cells, stable output voltage of 1.75 V Ni–Zn batteries, and high efficiency zinc–nickel–cobalt phosphide electrocatalysts are successfully assembled together to create a 24 h overall water‐splitting system. Specifically, the silicon‐based solar cells enable the charging of aqueous Ni–Zn batteries for energy storage as well as providing sufficient energy for electrocatalysis throughout the day; in addition, the high‐capacity Ni–Zn batteries offer a steady output voltage for overall water‐splitting at night. Such an uninterrupted solar‐to‐hydrogen system opens up exciting opportunities for the development and applications of renewable energy.  相似文献   

18.
In this study, pentacene thin‐film transistors (TFTs) operating at low voltages with high mobilities and low leakage currents are successfully fabricated by the surface modification of the CeO2–SiO2 gate dielectrics. The surface of the gate dielectric plays a crucial role in determining the performance and electrical reliability of the pentacene TFTs. Nearly hysteresis‐free transistors are obtained by passivating the devices with appropriate polymeric dielectrics. After coating with poly(4‐vinylphenol) (PVP), the reduced roughness of the surface induces the formation of uniform and large pentacene grains; moreover, –OH groups on CeO2–SiO2 are terminated by C6H5, resulting in the formation of a more hydrophobic surface. Enhanced pentacene quality and reduced hysteresis is observed in current–voltage (I–V) measurements of the PVP‐coated pentacene TFTs. Since grain boundaries and –OH groups are believed to act as electron traps, an OH‐free and smooth gate dielectric leads to a low trap density at the interface between the pentacene and the gate dielectric. The realization of electrically stable devices that can be operated at low voltages makes the OTFTs excellent candidates for future flexible displays and electronics applications.  相似文献   

19.
Magnetization dynamics induced by spin–orbit torques in a heavy‐metal/ferromagnet can potentially be used to design low‐power spintronics and logic devices. Recent computations have suggested that a strain‐mediated spin–orbit torque (SOT) switching in magnetoelectric (ME) heterostructures is fast, energy‐efficient, and permits a deterministic 180° magnetization switching. However, its experimental realization has remained elusive. Here, the coexistence of the strain‐mediated ME coupling and the SOT in a CoFeB/Pt/ferroelectric hybrid structure is shown experimentally. The voltage‐induced strain only slightly modifies the efficiency of SOT generation, but it gives rise to an effective magnetic anisotropy and rotates the magnetic easy axis which eliminates the incubation delay in current‐induced magnetization switching. The phase field simulations show that the electric‐field‐induced effective magnetic anisotropy field can reduce the switching time approximately by a factor of three for SOT in‐plane magnetization switching. It is anticipated that such strain‐mediated ME‐SOT hybrid structures may enable field‐free, ultrafast magnetization switching.  相似文献   

20.
Multiferroic heterostructures composed of complex oxide thin films and ferroelectric single crystals have aroused considerable interest due to the electrically switchable strain and charge elements of oxide films by the polarization reversal of ferroelectrics. Previous studies have demonstrated that the electric‐field‐control of physical properties of such heterostructures is exclusively due to the ferroelectric domain switching‐induced lattice strain effects. Here, the first successful integration of the hexagonal ZnO:Mn dilute magnetic semiconductor thin films with high performance (111)‐oriented perovskite Pb(Mg1/3Nb2/3)O3‐PbTiO3 (PMN‐PT) single crystals is reported, and unprecedented charge‐mediated electric‐field control of both electronic transport and ferromagnetism at room temperature for PMN‐PT single crystal‐based oxide heterostructures is realized. A significant carrier concentration‐tunability of resistance and magnetization by ≈400% and ≈257% is achieved at room temperature. The electric‐field controlled bistable resistance and ferromagnetism switching at room temperature via interfacial electric charge presents a potential strategy for designing prototype devices for information storage. The results also disclose that the relative importance of the strain effect and interfacial charge effect in oxide film/ferroelectric crystal heterostructures can be tuned by appropriately adjusting the charge carrier density of oxide films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号