首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
3.
All‐inorganic lead halide perovskite quantum dots (IHP QDs) have great potentials in photodetectors. However, the photoresponsivity is limited by the low charge transport efficiency of the IHP QD layers. High‐performance phototransistors based on IHP QDs hybridized with organic semiconductors (OSCs) are developed. The smooth surface of IHP QD layers ensures ordered packing of the OSC molecules above them. The OSCs significantly improve the transportation of the photoexcited charges, and the gate effect of the transistor structure significantly enhances the photoresponsivity while simultaneously maintaining high I photo/I dark ratio. The devices exhibit outstanding optoelectronic properties in terms of photoresponsivity (1.7 × 104 A W?1), detectivity (2.0 × 1014 Jones), external quantum efficiency (67000%), I photo/I dark ratio (8.1 × 104), and stability (100 d in air). The overall performances of our devices are superior to state‐of‐the‐art IHP photodetectors. The strategy utilized here is general and can be easily applied to many other perovskite photodetectors.  相似文献   

4.
Tin(Sn)‐based perovskite is currently considered one of the most promising materials due to extending the absorption spectrum and reducing the use of lead (Pb). However, Sn2+ is easily oxidized to Sn4+ in atmosphere, causing more defects and degradation of perovskite materials. Herein, double‐sided interface engineering is proposed, that is, Sn‐Pb perovskite films are sandwiched between the phenethylammonium iodide (PEAI) in both the bottom and top sides. The larger organic cations of PEA+ are arranged into a perovskite surface lattice to form a 2D capping layer, which can effectively prevent the water and oxygen to destroy bulk perovskite. Meanwhile, the PEA+ can also passivate defects of iodide anions at the bottom of perovskite films, which is always present but rarely considered previously. Compared to one sided passivation, Sn‐Pb hybrid perovskite photodetectors contribute a significant enhancement of performance and stability, yielding a broadband response of 300–1050 nm, a low dark current density of 1.25 × 10–3 mA cm–2 at –0.1 V, fast response speed of 35 ns, and stability beyond 240 h. Furthermore, the Sn‐Pb broadband photodetectors are integrated in an infrared up‐conversion system, converting near‐infrared light into visible light. It is believed that a double‐sided passivation method can provide new strategies to achieving high‐performance perovskite photodetectors.  相似文献   

5.
The performance of perovskite nanocrystals (NCs) in optoelectronics and photocatalysis is severely limited by the presence of large amounts of crystal boundaries in NCs film that greatly restricts energy transfer. Creating heterostructures based on perovskite NCs and 2D materials is a common approach to improve the energy transport at the perovskite/2D materials interface. Herein, methylamine lead bromide (MAPbBr3, MA: CH3NH3+) perovskite NCs are homogeneously deposited on highly conductive few‐layer MXene (Ti3C2Tx) nanosheets to form heterostructures through an in situ solution growth method. An optimal mixed solvent ratio is essential to realize the growth of perovskite NCs on Ti3C2Tx nanosheets. Time‐resolved photoluminescence spectroscopy, transient absorption spectroscopy, and the photoresponse of electron‐ and hole‐only photoelectric conversion devices reveal the interfacial energy transfer behavior within MAPbBr3/Ti3C2Tx heterostructures. The present investigation may provide a useful guide toward use of halide perovskite/2D material heterostructures in applications such as photocatalysis as well as optoelectronics.  相似文献   

6.
7.
8.
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号