首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seemingly contradictory reports on polar domains and their origin have surrounded the controversial discussion about the ferroelectricity of the methyl ammonium lead iodide (MAPbI3) thin films that are commonly employed in perovskite solar cells. In this work, microscopic modulations of the polar domain patterns upon application of an electric poling field are correlated with macroscopic changes to the currents through the MAPbI3 layer. Piezoresponse force microscopy is used to monitor the widening, narrowing, generation or extinction of polar domains, as well as shifts of the domain walls at room temperature under an in‐plane electric poling field that is applied between two laterally organized electrodes. This poling leads to a net polarization of individual grains and the thin film itself. Macroscopically, this net polarization results in a persistent shift of the diode characteristics that is measured across the channel between the electrodes. Both the modulation of the polar domains upon electric poling and the concurrent persistent shift of the electric currents through the device are the unambiguous hallmarks of ferroelectricity, which demonstrate that MAPbI3 is a ferroelectric semiconductor.  相似文献   

2.
The origin of hysteresis behavior is probed in perovskite solar cells (PSCs) with simultaneous measurements of cell open circuit voltage (Voc) and photoluminescence intensity over time following illumination of the cell. It is shown, for the first time, that the transient changes in terminal voltage and luminescent intensity do not follow the relationship that would be predicted by the generalized Plank radiation law. A mechanism is proposed based on the presence of a resistive barrier to majority carrier flow at the interface between the perovskite film and the electron or hole transport layer, in combination with significant interface recombination. This results in a decoupling of the internal quasi‐Fermi level separation and the externally measured voltage. A simple numerical model is used to provide in‐principle validation for the proposed mechanism and it is confirmed that mobile ionic species are a likely candidate for creating the time‐varying majority carrier bottleneck by its reduced conductivity. The findings show that the Voc of PSCs may be lower than the limit imposed by the cell luminescence efficiency, even under steady‐state conditions.  相似文献   

3.
Current–voltage hysteresis of perovskite solar cells (PSCs) has raised the concern of accurate performance measurement in practice. Although various theories have been proposed to elucidate this phenomenon, the origin of hysteresis is still an open question. Herein, the use of guanidinium cation (Gu+)‐dopant is demonstrated to tailor the crystal structure of mixed‐cation formamidinium‐cesium lead triiodide (FA0.83Cs0.17PbI3) perovskite, resulting in an improved energy conversion efficiency and tunable current–voltage hysteresis characteristic in planar solar cells. Particularly, when the concentration of Gu‐dopant for the perovskite film increases, the normal hysteresis initially observed in the pristine PSC is first suppressed with 2%‐Gu‐dopant, then changed to inverted hysteresis with a higher Gu‐dopant. The hysteresis tunability behavior is attributed to the interplay of charge/ion accumulation and recombination at interfaces in the PSC. Furthermore, compared to the cell without Gu+‐dopant, the optimal content of 2% Gu+‐dopant also increases the device efficiency by 14%, reaching over 17% under one sun illumination.  相似文献   

4.
High crystallinity and compactness of the active layer is essential for metal‐halide perovskite solar cells. Here, a simple pseudohalide‐induced film retreatment technology is developed as the passivation for preformed perovskite film. It is found that the retreatment process yields a controllable decomposition‐to‐recrystallization evolution of the perovskite film. Corresponding, it remarkably enlarges the grain size of the film in all directions, as well as improving the crystallinity and hindering the trap density. Meanwhile, owing to an intermediate catalytic effect of the pseudohalide compound (NH4SCN), no crystal orientation changing and no impurity introduction in the modified film. By integrating the modified perovskite film into the planar heterojunction solar cells, a champion power conversion efficiency of 19.44% with a stabilized output efficiency of 19.02% under 1 sun illumination is obtained, exhibiting a negligible current density–voltage hysteresis. Moreover, such a facile and low‐temperature film retreatment approach guarantees the application in flexible devices, showing a best power conversion efficiency of 17.04%.  相似文献   

5.
Perovskite‐based solar cells are generally assembled as planar structures comprising a flat organoammonium metal halide perovskite layer, or mesoscopic structures employing a mesoporous metal‐oxide scaffold into which the perovskite material is infiltrated. To present, little attention has been directed toward the texturing of the perovskite material itself. Herein, a textured CH3NH3PbI3 morphology formed through a thin mesoporous TiO2 seeding layer and a gas‐assisted crystallization method is reported. The textured morphology comprises a multitiered nanostructure, which allows for significant improvements in the light harvesting and charge extraction performance of the solar cells. Due to these improvements, average short‐circuit current densities for a batch of 28 devices are in excess of 22 mA cm?2, and the maximum recorded power conversion efficiency is 16.3%. The performance gains concomitant with this textured CH3NH3PbI3 morphology provide further insights into how control of the perovskite microstructure can be used to enhance the cell performance.  相似文献   

6.
The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer.  相似文献   

7.
Electromechanical coupling in complex oxide heterostructures opens new possibilities for the development of a broad range of novel electronic devices with enhanced functionality. In this article, the switchable hysteretic electro­mechanical behavior of crystalline epitaxial LaAlO3 (LAO) thin films associated with polarization induced by electrical and mechanical stimuli is investigated. The field–time‐dependent testing of the induced polarization states along with transport measurements and theoretical modeling suggests that the ferroelectric‐like response of the LAO thin films is mediated by the field‐induced ion migration in the bulk of the film. Comparative analysis of the dynamics of polarization reversal under the electrical field and mechanical stress applied via a tip of a scanning probe microscope demonstrates that both electrical and mechanical stimulus can be used to effectively control polarization at least at the submillisecond timescale. However, the mechanical writing is more localized than the electrical one. A combined electrical/mechanical approach for tuning the physical properties of oxide hetero­structures may potentially facilitate novel memory and logic devices, in which the data bits are written mechanically and read electrically.  相似文献   

8.
9.
Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next-generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias-dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias-dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias-induced degradation of PSCs as well as bias-dependent double-edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs.  相似文献   

10.
The photoluminescence, transmittance, charge‐carrier recombination dynamics, mobility, and diffusion length of CH3NH3PbI3 are investigated in the temperature range from 8 to 370 K. Profound changes in the optoelectronic properties of this prototypical photovoltaic material are observed across the two structural phase transitions occurring at 160 and 310 K. Drude‐like terahertz photoconductivity spectra at all temperatures above 80 K suggest that charge localization effects are absent in this range. The monomolecular charge‐carrier recombination rate generally increases with rising temperature, indicating a mechanism dominated by ionized impurity mediated recombination. Deduced activation energies Ea associated with ionization are found to increase markedly from the room‐temperature tetragonal (Ea ≈ 20 meV) to the higher‐temperature cubic (Ea ≈ 200 meV) phase adopted above 310 K. Conversely, the bimolecular rate constant decreases with rising temperature as charge‐carrier mobility declines, while the Auger rate constant is highly phase specific, suggesting a strong dependence on electronic band structure. The charge‐carrier diffusion length gradually decreases with rising temperature from about 3 μm at ?93 °C to 1.2 μm at 67 °C but remains well above the optical absorption depth in the visible spectrum. These results demonstrate that there are no fundamental obstacles to the operation of cells based on CH3NH3PbI3 under typical field conditions.  相似文献   

11.
Organometal perovskite single crystals have been recognized as a promising platform for high-performance optoelectronic devices, featuring high crystallinity and stability. However, a high trap density and structural nonuniformity at the surface have been major barriers to the progress of single crystal-based optoelectronic devices. Here, the formation of a unique nanoisland structure is reported at the surface of the facet-controlled cuboid MAPbI3 (MA = CH3NH3+) single crystals through a cation interdiffusion process enabled by energetically vaporized CsI. The interdiffusion of mobile ions between the bulk and the surface is triggered by thermally activated CsI vapor, which reconstructs the surface that is rich in MA and CsI with reduced dangling bonds. Simultaneously, an array of Cs-Pb-rich nanoislands is constructed on the surface of the MAPbI3 single crystals. This newly reconstructed nanoisland surface enhances the light absorbance over 50% and increases the charge carrier mobility from 56 to 93 cm2 V−1 s−1. As confirmed by Kelvin probe force microscopy, the nanoislands form a gradient band bending that prevents recombination of excess carriers, and thus, enhances lateral carrier transport properties. This unique engineering of the single crystal surface provides a pathway towards developing high-quality perovskite single-crystal surface for optoelectronic applications.  相似文献   

12.
The sensitivity of organic–inorganic perovskites to environmental factors remains a major barrier for these materials to become commercially viable for photovoltaic applications. In this work, the degradation of formamidinium lead iodide (FAPbI3) perovskite in a moist environment is systematically investigated. It is shown that the level of relative humidity (RH) is important for the onset of degradation processes. Below 30% RH, the black phase of the FAPbI3 perovskite shows excellent phase stability over 90 d. Once the RH reaches 50%, degradation of the FAPbI3 perovskite occurs rapidly. Results from a Kelvin probe force microscopy study reveal that the formation of nonperovskite phases initiates at the grain boundaries and the phase transition proceeds toward the grain interiors. Also, ion migration along the grain boundaries is greatly enhanced upon degradation. A post‐thermal treatment (PTT) that removes chemical residues at the grain boundaries which effectively slows the degradation process is developed. Finally, it is demonstrated that the PTT process improves the performance and stability of the final device.  相似文献   

13.
Enhancing open‐circuit voltage in CH3NH3PbI3(Cl) perovskite solar cells has become a major challenge for approaching the theoretical limit of the power conversion efficiency. Here, for the first time, it is demonstrated that the synergistic effect of PbI2 passivation and chlorine incorporation via controlling the molar ratio of PbI2, PbCl2 (or MACl), and MAI in the precursor solutions, boosts the open‐circuit voltage of CH3NH3PbI3(Cl) perovskite solar cells over 1.15 V in both mesoscopic and inverted planar perovskite solar cells. Such high open‐circuit voltage can be attributed to the enhanced photoluminescence emission and carrier lifetime associated with the reduced trap densities. The morphology and composition analysis using scanning electron microscopy, X‐ray diffraction measurements, and energy dispersive X‐ray spectroscopy confirm the high quality of the optimized CH3NH3PbI3(Cl) perovskite film. On this basis, record‐high efficiencies of 16.6% for nonmetal‐electrode all‐solution‐processed perovskite solar cells and 18.4% for inverted planar perovskite solar cells are achieved.  相似文献   

14.
Grain size effects on electromechanical properties and voltage‐driven ferroelastic domain wall motion are a well‐known phenomenon in polycrystalline ferroelectrics. Here, the origin of the grain size effects on voltage‐driven ferroelastic domain wall motion is presented with the direct observation of ferroelastic domain evolution with applied DC voltage by piezoelectric force microscopy and polarization hysteresis loop. It is demonstrated that the microstructure parameter for controlling the voltage‐driven ferroelastic domain wall motion is the number of colonies of stripe domains in a grain rather than the grain size. Single colony grains do not show considerable out‐of‐plane (001) domain width change whereas multiple colony grains exhibit significant domain width increase with an applied DC voltage. No independent grain size effect on ferroelastic domain wall motion is observed in the grain size range 0.6–1.6 µm.  相似文献   

15.
The nonlinear response of a ferroic to an applied field has been studied through the phenomenological Rayleigh Law for over a hundred years. Yet, despite this, the fundamental physical mechanisms at the nanoscale that lead to macroscopic Rayleigh behavior have remained largely elusive, and experimental evidence at small length scales is limited. Here, it is shown using a combination of scanning probe techniques and phase field modeling, that nanoscale piezoelectric response in prototypical Pb(Zr,Ti)O3 films appears to follow a distinctly non‐Rayleigh regime. Through statistical analysis, it is found that an averaging of local responses can lead directly to Rayleigh‐like behavior of the strain on a macroscale. Phase‐field modeling confirms the twist of the ferroelastic interface is key in enhancing piezoelectric response. The studies shed light on the nanoscale origins of nonlinear behavior in disordered ferroics.  相似文献   

16.
Amasev  D. V.  Tameev  A. R.  Kazanskii  A. G. 《Semiconductors》2019,53(12):1597-1602
Semiconductors - The effect of temperature on the photoconductivity and its spectral dependence for thin films of organometallic CH3NH3PbI3 perovskite is studied. The measurements performed at...  相似文献   

17.
Highly efficient and non-hysteresis organic/perovskite planar heterojunction solar cells was fabricated by low-temperature, solution-processed method with a structure of ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Al. The high-quality perovskite thin film was obtained using a solvent-induced-fast-crystallization deposition involving spin-coating the CH3NH3PbI3 solution followed by top-dropping chlorobenzene with an accurate control to induce the crystallization, which results in highly crystalline, pinhole-free, and smooth perovskite thin film. Furthermore, it was found that the molar ratio of CH3NH3I to PbI2 greatly influence the properties of CH3NH3PbI3 film and the device performance. The equimolar or excess PbI2 was facile to form a flat CH3NH3PbI3 film and produced relatively uniform perovskite crystals. Perovskite solar cells (PSCs) with high-quality CH3NH3PbI3 thin film showed good performance and excellent repeatability. The power conversion efficiency (PCE) up to 13.49% was achieved, which is one of the highest PCEs obtained for low-temperature, solution-processed planar perovskite solar cells based on the structure ITO/PEDOT:PSS/CH3NH3PbI3/PC61BM/Al. More importantly, PSCs fabricated using this method didn’t show obvious hysteresis under different scan direction and speed.  相似文献   

18.
Light soaking (LS) has been reported to positively influence the device performance of perovskite solar cells (PSCs), which, however, could be potentially harmful to the loaded devices due to the unstable output. There are very few reports on controls over the LS effect, especially in all-inorganic PSCs. In this study, a remarkable LS induced performance enhancement of CsPb(I1−xBrx)3 based PSCs is presented. In situ grazing-incidence wide-angle X-ray scattering measurements quantize the temperature increase under illumination and reveal a radiative heating-induced lattice expansion. The device curing time is shortened with the increased Br/I ratio, evidently correlated with their distinct mobility and activation energy. It is suggested that LS could promote the migration of halide ions, giving rise to notable defect passivation and thus device improvements. Based on these understandings, an effective means is proposed to suppress the LS effect, which is to incorporate slightly over-stochiometric PbI2 in precursor, and a champion PCE of 18.14% in all-inorganic PSCs with significantly reduced device curing time is obtained.  相似文献   

19.
Amasev  D. V.  Mikhalevich  V. G.  Tameev  A. R.  Saitov  Sh. R.  Kazanskii  A. G. 《Semiconductors》2020,54(6):654-657
Semiconductors - The effect of annealing of a CH3NH3PbI3 organometallic perovskite film on its electrical, photoelectrical, and optical properties is studied. It is shown that annealing at the...  相似文献   

20.
The unprecedented advancement in power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) has rendered them a promising game-changer in photovoltaics. However, unsatisfactory environmental stability and high manufacturing cost of window electrodes are bottlenecks impeding their commercialization. Here, a strategy is introduced to address these bottlenecks by replacing the costly indium tin oxide (ITO) window electrodes via a simple transfer technique with single-walled carbon nanotubes (SWCNTs) films, which are made of earth-abundant elements with superior chemical and environmental stability. The resultant devices exhibit PCEs of ≈19% on rigid substrates, which is the highest value reported to date for ITO-free PSCs. The facile approach for SWCNTs also enables application in flexible PSCs (f-PSCs), delivering a PCE of ≈18% with superior mechanical robustness over their ITO-based counterparts due to the excellent mechanical properties of SWCNTs. The SWCNT-based PSCs also deliver satisfactory performances on large-area (1 cm2 active area in this work). Furthermore, these SWCNT-based PSCs can retain over 80% of original PCEs after exposure to air over 700 h while ITO-based devices only sustain ≈60% of initial PCEs. This work paves a promising way to accelerate the commercialization of ITO-free PSCs with reduced material cost and prolonged lifetimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号