首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transition metal phosphides are a new class of materials generating interest as alternative negative electrodes in lithium‐ion batteries. However, metal phosphide syntheses remain underdeveloped in terms of simultaneous control over phase composition and 3D nanostructure. Herein, M13 bacteriophage is employed as a biological scaffold to develop 3D nickel phosphide nanofoams with control over a range of phase compositions and structural elements. Virus‐templated Ni5P4 nanofoams are then integrated as thin‐film negative electrodes in lithium‐ion microbatteries, demonstrating a discharge capacity of 677 mAh g–1 (677 mAh cm–3) and an 80% capacity retention over more than 100 cycles. This strong electrochemical performance is attributed to the virus‐templated, nanostructured morphology, which remains electronically conductive throughout cycling, thereby sidestepping the need for conductive additives. When accounting for the mass of additional binder materials, virus‐templated Ni5P4 nanofoams demonstrate the highest practical capacity reported thus far for Ni5P4 electrodes. Looking forward, this synthesis method is generalizable and can enable precise control over the 3D nanostructure and phase composition in other metal phosphides, such as cobalt and copper.  相似文献   

2.
Bromine‐based flow batteries are well suited for stationary energy storage due to attractive features of high energy density and low cost. However, the bromine‐based flow battery suffers from low power density and large materials consumption due to the relatively high polarization of the Br2/Br? couple on the electrodes. Herein, a self‐supporting 3D hierarchical composite electrode based on a TiN nanorod array is designed to improve the activity of the Br2/Br? couple and increase the power density of the bromine‐based flow battery. In this design, a carbon felt provides a composite electrode with a 3D electron conductive framework to guarantee high electronic conductivity, while the TiN nanorods possess excellent catalytic activity for the Br2/Br? electrochemical reaction to reduce the electrochemical polarization. Moreover, the 3D micro–nano hierarchical nanorod‐array alignment structure contributes to a high electrolyte penetration and a high ion‐transfer rate to reduce diffusion polarization. As a result, a zinc–bromine flow battery with the designed composite electrode can be operated at a current density of up to 160 mA cm?2, which is the highest current density ever reported. These results exhibit a promising strategy to fabricate electrodes for ultrahigh‐power‐density bromine‐based flow batteries and accelerate the development of bromine‐based flow batteries.  相似文献   

3.
Rechargeable Zn‐ion batteries are promising candidates for wearable energy storage devices. However, their performance is severely restricted by the low conductivity and inferior mass loading. Herein, a new type of the textile based electrodes with 3D hierarchical branched design is reported. Both Ni nanoparticles and carbon nanotubes are used to build conductive coatings on the textiles. The 3D hierarchical nanostructures, consisting of the vertical‐aligned nanosheets and the fluffy‐like small flakes, grow on the conductive textiles to form the self‐supported electrodes. It ensures fast electron/ion transport and high mass loading, and maintains the structure stability during cycling. Two textile electrodes with the NiCo hydroxide and MnO2 self‐branched nanostructures are constructed. Their faster kinetics, higher capacity and better rate capability than the solitary nanosheets based counterpart demonstrate the superiority of the hierarchical architecture. Moreover, the solid‐state Zn‐MnO2 and Zn‐NiCo batteries are fabricated based on the textile electrodes and the polymer electrolytes. The high energy density, superior power density and good long‐term cycling stability confirm their excellent energy storage ability and fast charge/discharge capability. Particularly, the high safety under various conditions enable them promising candidates for wearable electronics.  相似文献   

4.
The combination of high‐capacity and long‐term cycling stability is an important factor for practical application of anode materials for lithium‐ion batteries. Herein, NixMnyCozO nanowire (x + y + z = 1)/carbon nanotube (CNT) composite microspheres with a 3D interconnected conductive network structure (3DICN‐NCS) are prepared via a spray‐drying method. The 3D interconnected conductive network structure can facilitate the penetration of electrolyte into the microspheres and provide excellent connectivity for rapid Li+ ion/electron transfer in the microspheres, thus greatly reducing the concentration polarization in the electrode. Additionally, the empty spaces among the nanowires in the network accommodate microsphere volume expansion associated with Li+ intercalation during the cycling process, which improves the cycling stability of the electrode. The CNTs distribute uniformly in the microspheres, which act as conductive frameworks to greatly improve the electrical conductivity of the microspheres. As expected, the prepared 3DICN‐NCS demonstrates excellent electrochemical performance, showing a high capacity of 1277 mAh g?1 at 1 A g?1 after 2000 cycles and 790 mAh g?1 at 5 A g?1 after 1000 cycles. This work demonstrates a universal method to construct a 3D interconnected conductive network structure for anode materials  相似文献   

5.
Fe2O3 is regarded as a promising anode material for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod‐like nanostructured material, consisting of Fe2O3 nanoparticles homogeneously encapsulated in the hollow interior of N‐doped porous carbon nanofibers, as a high‐performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea‐like Fe2O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na‐ions. As a consequence, this peapod‐like structure exhibits a stable discharge capacity of 1434 mAh g?1 (at 100 mA g?1) and 806 mAh g?1 (at 200 mA g?1) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g?1 after 1000 cycles and 396 mAh g?1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g?1. This study provides a promising strategy for developing long‐cycle‐life LIBs and SIBs.  相似文献   

6.
Although graphite materials have been applied as commercial anodes in lithium‐ion batteries (LIBs), there still remain abundant spaces in the development of carbon‐based anode materials for sodium‐ion batteries (SIBs). Herein, an electrospinning route is reported to fabricate nitrogen‐doped carbon nanofibers with interweaved nanochannels (NCNFs‐IWNC) that contain robust interconnected 1D porous channels, produced by removal of a Te nanowire template that is coelectrospun within carbon nanofibers during the electrospinning process. The NCNFs‐IWNC features favorable properties, including a conductive 1D interconnected porous structure, a large specific surface area, expanded interlayer graphite‐like spacing, enriched N‐doped defects and active sites, toward rapid access and transport of electrolyte and electron/sodium ions. Systematic electrochemical studies indicate that the NCNFs‐IWNC exhibits an impressively high rate capability, delivering a capacity of 148 mA h g?1 at current density of as high as 10 A g?1, and has an attractively stable performance over 5000 cycles. The practical application of the as‐designed NCNFs‐IWNC for a full SIBs cell is further verified by coupling the NCNFs‐IWNC anode with a FeFe(CN)6 cathode, which displays a desirable cycle performance, maintaining acapacity of 97 mA h g?1 over 100 cycles.  相似文献   

7.
Recently, a new class of 2D materials, i.e., transition metal carbides, nitrides, and carbonitrides known as MXenes, is unveiled with more than 20 types reported one after another. Since they are flexible and conductive, MXenes are expected to compete with graphene and other 2D materials in many applications. Here, a general route is reported to simple self‐assembly of transition metal oxide (TMO) nanostructures, including TiO2 nanorods and SnO2 nanowires, on MXene (Ti3C2) nanosheets through van der Waals interactions. The MXene nanosheets, acting as the underlying substrate, not only enable reversible electron and ion transport at the interface but also prevent the TMO nanostructures from aggregation during lithiation/delithiation. The TMO nanostructures, in turn, serve as the spacer to prevent the MXene nanosheets from restacking, thus preserving the active areas from being lost. More importantly, they can contribute extraordinary electrochemical properties, offering short lithium diffusion pathways and additional active sites. The resulting TiO2/MXene and SnO2/MXene heterostructures exhibit superior high‐rate performance, making them promising high‐power and high‐energy anode materials for lithium‐ion batteries.  相似文献   

8.
Major challenges in developing 2D transition‐metal disulfides (TMDs) as anode materials for lithium/sodium ion batteries (LIBs/SIBs) lie in rational design and targeted synthesis of TMD‐based nanocomposite structures with precisely controlled ion and electron transport. Herein, a general and scalable solvent‐exchange strategy is presented for uniform dispersion of few‐layer MoS2 (f‐MoS2) from high‐boiling‐point solvents (N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethyl formaldehyde (DMF), etc.) into low‐boiling‐point solvents (water, ethanol, etc.). The solvent‐exchange strategy dramatically simplifies high‐yield production of dispersible MoS2 nanosheets as well as facilitates subsequent decoration of MoS2 for various applications. As a demonstration, MoS2‐decorated nitrogen‐rich carbon spheres (MoS2‐NCS) are prepared via in situ growth of polypyrrole and subsequent pyrolysis. Benefiting from its ultrathin feature, largely exposed active surface, highly conductive framework and excellent structural integrity, the 2D core–shell architecture of MoS2‐NCS exhibits an outstanding reversible capacity and excellent cycling performance, achieving high initial discharge capacity of 1087.5 and 508.6 mA h g?1 at 0.1 A g?1, capacity retentions of 95.6% and 94.2% after 500 and 250 charge/discharge cycles at 1 A g?1, for lithium/sodium ion storages, respectively.  相似文献   

9.
The capability of fast charge and fast discharge is highly desirable for the electrode materials used in supercapacitors and lithium ion batteries. In this article, we report a simple strategy to considerably improve the high rate capability of Co3O4 nanowire array electrodes by uniformly loading Ag nanoparticles onto the surfaces of the Co3O4 nanowires via the silver-mirror reaction. The highly electrically conductive silver nanoparticles function as a network for the facile transport of electrons between the current collectors (Ti substrates) and the Co3O4 active materials. High capacity as well as remarkable rate capability has been achieved through this simple approach. Such novel Co3O4-Ag composite nanowire array electrodes have great potential for practical applications in pseudo-type supercapacitors as well as in lithium ion batteries.  相似文献   

10.
Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze‐cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye‐sensitized solar cells, short‐circuit photocurrent density up to 22.0 mA cm?2 is achieved in the conventional N719 dye‐I3?/I? redox electrolyte system even with an intrinsically inferior quasi‐solid electrolyte.  相似文献   

11.
A simple and green method is developed for the preparation of nanostructured TiO2 supported on nitrogen‐doped carbon foams (NCFs) as a free‐standing and flexible electrode for lithium‐ion batteries (LIBs), in which the TiO2 with 2.5–4 times higher loading than the conventional TiO2‐based flexible electrodes acts as the active material. In addition, the NCFs act as a flexible substrate and efficient conductive networks. The nanocrystalline TiO2 with a uniform size of ≈10 nm form a mesoporous layer covering the wall of the carbon foam. When used directly as a flexible electrode in a LIB, a capacity of 188 mA h g?1 is achieved at a current density of 200 mA g?1 for a potential window of 1.0–3.0 V, and a specific capacity of 149 mA h g?1 after 100 cycles at a current density of 1000 mA g?1 is maintained. The highly conductive NCF and flexible network, the mesoporous structure and nanocrystalline size of the TiO2 phase, the firm adhesion of TiO2 over the wall of the NCFs, the small volume change in the TiO2 during the charge/discharge processes, and the high cut‐off potential contribute to the excellent capacity, rate capability, and cycling stability of the TiO2/NCFs flexible electrode.  相似文献   

12.
LiV3O8 nanorods with controlled size are successfully synthesized using a nonionic triblock surfactant Pluronic‐F127 as the structure directing agent. X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques are used to characterize the samples. It is observed that the nanorods with a length of 4–8 µm and diameter of 0.5–1.0 µm distribute uniformly. The resultant LiV3O8 nanorods show much better performance as cathode materials in lithium‐ion batteries than normal LiV3O8 nanoparticles, which is associated with the their unique micro–nano‐like structure that can not only facilitate fast lithium ion transport, but also withstand erosion from electrolytes. The high discharge capacity (292.0 mAh g?1 at 100 mA g?1), high rate capability (138.4 mAh g?1 at 6.4 A g?1), and long lifespan (capacity retention of 80.5% after 500 cycles) suggest the potential use of LiV3O8 nanorods as alternative cathode materials for high‐power and long‐life lithium ion batteries. In particular, the synthetic strategy may open new routes toward the facile fabrication of nanostructured vanadium‐based compounds for energy storage applications.  相似文献   

13.
Much attention is paid to metal lithium as a hopeful negative material for reversible batteries with a high specific capacity. Although applying 3D hosts can relieve the dendrite growth to some extent, gradient‐distributed lithium ion in 3D uniform hosts still induces uncontrolled lithium dendrites growth, especially at high lithium capacity and high current density. Herein, a 3D conductive carbon nanofiber framework with gradient‐distributed ZnO particles as nucleation seeds (G‐CNF) to regulate lithium deposition is proposed. Based on such a unique structure, the G‐CNF electrode exhibits a high average Coulombic efficiency (CE) of 98.1% for 700 cycles at 0.5 mA cm?2. Even at 5 mA cm?2, the G‐CNF electrode performs a stable cycling process and high CE of 96.0% for over 200 cycles. When the lithium‐deposited G‐CNF (G‐CNF‐Li) anode is applied in a full cell with a commercial LiFePO4 cathode, it exhibits a stable capacity of 115 mAh g?1 and high retention of 95.7% after 300 cycles. Through inducing the gradient‐distributed nucleation seeds to counter the existing Li‐ion concentration polarization, a uniform and stable lithium deposition process in the 3D host is achieved even under the condition of high current density.  相似文献   

14.
Solid‐state batteries are hindered from practical applications, largely due to the retardant ionic transportation kinetics in solid electrolytes (SEs) and across electrode/electrolyte interfaces. Taking advantage of nanostructured UIO/Li‐IL SEs, fast lithium ion transportation is achieved in the bulk and across the electrode/electrolyte interfaces; in UIO/Li‐IL SEs, Li‐containing ionic liquid (Li‐IL) is absorbed in Uio‐66 metal–organic frameworks (MOFs). The ionic conductivity of the UIO/Li‐IL (15/16) SE reaches 3.2 × 10?4 S cm?1 at 25 °C. Owing to the high surface tension of nanostructured UIO/Li‐IL SEs, the contact between electrodes and the SE is excellent; consequently, the interfacial resistances of Li/SE and LiFePO4/SE at 60 °C are about 44 and 206 Ω cm2, respectively. Moreover, a stable solid conductive layer is formed at the Li/SE interface, making the Li plating/stripping stable. Solid‐state batteries from the UIO/Li‐IL SEs show high discharge capacities and excellent retentions (≈130 mA h g?1 with a retention of 100% after 100 cycles at 0.2 C; 119 mA h g?1 with a retention of 94% after 380 cycles at 1 C). This new type of nanostructured UIO/Li‐IL SEs is very promising for solid‐state batteries, and will open up an avenue toward safe and long lifespan energy storage systems.  相似文献   

15.
Rechargeable batteries based on an abundant metal such as aluminum with a three‐electron transfer per atom are promising for large‐scale electrochemical energy storage. Aluminum can be handled in air, thus offering superior safety, easy fabrication, and low cost. However, the development of Al‐ion batteries has been challenging due to the difficulties in identifying suitable cathode materials. This study presents the use of a highly open framework Mo2.5 + y VO9 + z as a cathode for Al‐ion batteries. The open‐tunnel oxide allows a facile diffusion of the guest species and provides sufficient redox centers to help redistribute the charge within the local host lattice during the multivalent‐ion insertion, thus leading to good rate capability with a specific capacity among the highest reported in the literature for Al‐based batteries. This study also presents the use of Mo2.5 + y VO9 + z as a model host to develop a novel ultrafast technique for chemical insertion of Al ions into host structures. The microwave‐assisted method employing diethylene glycol and aluminum diacetate (Al(OH)(C2H3O2)2) can be performed in air in as little as 30 min, which is far superior to the traditional chemical insertion techniques involving moisture‐sensitive organometallic reagents. The Al‐inserted Al x Mo2.5 + y VO9 + z obtained by the microwave‐assisted chemical insertion can be used in Al‐based rechargeable batteries.  相似文献   

16.
The pursuit of high reversible capacity and long cycle life for rechargeable batteries has gained extensive attention in recent years, and the development of applicable electrode materials is the key point. Herein, thanks to the preintercalation of lithium ions, a stable and highly conductive nanostructure of V2C MXene is successfully fabricated via a facile self‐discharge mechanism, which provides open spaces for rapid ion diffusion and guarantees fast electron transport. Taking the prelithiated V2C as electrode, an outstanding initial coulombic efficiency of 80% and an impressive capacity retention of ≈98% after 5000 charge/discharge cycles are achieved for lithium‐ion batteries. Especially, it demonstrates a fascinating reversible capacity of up to 230.3 mA h g?1 at 0.02 A g?1 and a long cycling life of 82% capacity retention over 480 cycles in the hybrid magnesium/lithium‐ion batteries. In addition, the Mg2+ and Li+ ions cointercalation mechanism of the prelithiated V2C is elucidated through ex situ X‐ray diffraction and X‐ray photoelectron spectroscopy characterizations. This work not only offers an effective approach to compensate the large initial lithium loss of high‐capacity anode materials but also opens up a new and viable avenue to develop promising hybrid Mg/Li‐storage materials with eminent electrochemical performance.  相似文献   

17.
Polydopamine, a functional coating material, is redox active as cathode materials for both Li‐ and Na‐ion batteries or hybrid capacitors. Here, a polydopamine coating onto 3D graphene framework is introduced through a simple hydrothermal process, during which graphene oxide serves not only as an oxidant for assisting the polymerization of dopamine, but also as a template for the conformal growth of polydopamine. High‐density films are fabricated by compressing the polydopamine‐coated graphene aerogels, which can be directly used as free‐standing and flexible cathodes in both Li‐ and Na‐cells. The compact electrodes deliver high capacities of ≈230 mAh g−1 in Li‐cells and ≈211 mAh g−1 in Na‐cells based on the total mass of electrodes. These compact electrodes also exhibit exceptional cycling stability and high rate performance due to the unique structure in which polydopamine is uniformly coated on the 3D structured graphene.  相似文献   

18.
Carbon materials have received considerable attention as host cathode materials for sulfur in lithium–sulfur batteries; N‐doped carbon materials show particularly high electrocatalytic activity. Efforts are made to synthesize N‐doped carbon materials by introducing nitrogen‐rich sources followed by sintering or hydrothermal processes. In the present work, an in situ hollow cathode discharge plasma treatment method is used to prepare 3D porous frameworks based on N‐doped graphene as a potential conductive matrix material. The resulting N‐doped graphene is used to prepare a 3D porous framework with a S content of 90 wt% as a cathode in lithium–sulfur cells, which delivers a specific discharge capacity of 1186 mAh g?1 at 0.1 C, a coulombic efficiency of 96% after 200 cycles, and a capacity retention of 578 mAh g?1 at 1.0 C after 1000 cycles. The performance is attributed to the flexible 3D structure and clustering of pyridinic N‐dopants in graphene. The N‐doped graphene shows high electrochemical performance and the flexible 3D porous stable structure accommodates the considerable volume change of the active material during lithium insertion and extraction processes, improving the long‐term electrochemical performance.  相似文献   

19.
Research on next‐generation battery technologies (beyond Li‐ion batteries, or LIBs) has been accelerating over the past few years. A key challenge for these emerging batteries has been the lack of suitable electrode materials, which severely limits their further developments. MXenes, a new class of 2D transition metal carbides, carbonitrides, and nitrides, are proposed as electrode materials for these emerging batteries due to several desirable attributes. These attributes include large and tunable interlayer spaces, excellent hydrophilicity, extraordinary conductivity, compositional diversity, and abundant surface chemistries, making MXenes promising not only as electrode materials but also as other components in the cells of emerging batteries. Herein, an overview and assessment of the utilization of MXenes in rechargeable batteries beyond LIBs, including alkali‐ion (e.g., Na+, K+) storage, multivalent‐ion (e.g., Mg2+, Zn2+, and Al3+) storage, and metal batteries are presented. In particular, the synthetic strategies and properties of MXenes that enable MXenes to play various roles as electrodes, metal anode protective layers, sulfur hosts, separator modification layers, and conductive additives in these emerging batteries are discussed. Moreover, a perspective on promising future research directions on MXenes and MXene‐based materials, ranging from material design and processing, fundamental understanding of the reaction mechanisms, to device performance optimization strategies is provided.  相似文献   

20.
Fiber‐shaped supercapacitors with improved specific capacitance and high rate capability are a promising candidate as power supply for smart textiles. However, the synergistic interaction between conductive filaments and active nanomaterials remains a crucial challenge, especially when hydrothermal or electrochemical deposition is used to produce a core (fiber)–shell (active materials) fibrous structure. On the other hand, although 2D pseudocapacitive materials, e.g., Ti3C2T x (MXene), have demonstrated high volumetric capacitance, high electrical conductivity, and hydrophilic characteristics, MXene‐based electrodes normally suffer from poor rate capability owing to the sheet restacking especially when the loading level is high and solid‐state gel is used as electrolyte. Herein, by hosting MXene nanosheets (Ti3C2T x ) in the corridor of a scrolled carbon nanotube (CNT) scaffold, a MXene/CNT fiber with helical structure is successfully fabricated. These features offer open spaces for rapid ion diffusion and guarantee fast electron transport. The solid‐state supercapacitor based on such hybrid fibers with gel electrolyte coating exhibits a volumetric capacitance of 22.7 F cm−3 at 0.1 A cm−3 with capacitance retention of 84% at current density of 1.0 A cm−3 (19.1 F cm−3), improved volumetric energy density of 2.55 mWh cm−3 at the power density of 45.9 mW cm−3, and excellent mechanical robustness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号