首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The bulk synthesis of fluorescent colloidal SU‐8 polymer rods with tunable dimensions is described. The colloidal SU‐8 rods are prepared by shearing an emulsion of SU‐8 polymer droplets and then exposing the resulting non‐Brownian rods to ultrasonic waves, which breaks them into colloidal rods with typical lengths of 3.5–10 µm and diameters of 0.4–1 µm. The rods are stable in both aqueous and apolar solvents, and by varying the composition of apolar solvent mixtures both the difference in refractive index and mass density between particles and solvent can be independently controlled. Consequently, these colloidal SU‐8 rods can be used in both 3D confocal microscopy and optical trapping experiments while carefully tuning the effect of gravity. This is demonstrated by using confocal microscopy to image the liquid crystalline phases and the isotropic–nematic interface formed by the colloidal SU‐8 rods and by optically trapping single rods in water. Finally, the simultaneous confocal imaging and optical manipulation of multiple SU‐8 rods in the isotropic phase is shown.  相似文献   

2.
2D van der Waals (vdW) magnets, which present intrinsic ferromagnetic/antiferromagnetic ground states at finite temperatures down to atomic‐layer thicknesses, open a new horizon in materials science and enable the potential development of new spin‐related applications. The layered structure of vdW magnets facilitates their atomic‐layer cleavability and magnetic anisotropy, which counteracts spin fluctuations, thereby providing an ideal platform for theoretically and experimentally exploring magnetic phase transitions in the 2D limit. With reduced dimensions, the susceptibility of 2D magnets to a large variety of external stimuli also makes them more promising than their bulk counterpart in various device applications. Here, the current status of characterization and tuning of the magnetic properties of 2D vdW magnets, particularly the atomic‐layer thickness, is presented. Various state‐of‐the‐art optical and electrical techniques have been applied to reveal the magnetic states of 2D vdW magnets. Other emerging 2D vdW magnets and future perspectives on the stacking strategy are also given; it is believed that they will excite more intensive research and provide unprecedented opportunities in the field of spintronics.  相似文献   

3.
A novel high‐throughput magnetic tweezers‐based 3D microchannel electroporation system capable of transfecting 40 000 cells/cm2 on a single chip for gene therapy, regenerative medicine, and intracellular detection of target mRNA for screening cellular heterogeneity is reported. A single cell or an ordered array of individual cells are remotely guided by programmable magnetic fields to poration sites with high (>90%) cell alignment efficiency to enable various transfection reagents to be delivered simultaneously into the cells. The present technique, in contrast to the conventional vacuum‐based approach, is significantly gentler on the cellular membrane yielding >90% cell viability and, moreover, allows transfected cells to be transported for further analysis. Illustrating the versatility of the system, the GATA2 molecular beacon is delivered into leukemia cells to detect the regulation level of the GATA2 gene that is associated with the initiation of leukemia. The uniform delivery and a sharp contrast of fluorescence intensity between GATA2 positive and negative cells demonstrate key aspects of the platform for gene transfer, screening and detection of targeted intracellular markers in living cells.  相似文献   

4.
Abstract

A method and mathematical foundation are presented for generating multiple-beam optical tweezers capable of introducing complex trapping beam configurations that enable optical manipulation for a variety of colloidal structures. The method is based on the generalized phase contrast technique for generating high intensity beam patterns from an input phase modulation encoded on a spatial light modulator. The mathematical foundation describes issues concerning how the method provides high photon efficiency adequate for generating large array traps while maintaining dynamic features. Experimental results show multiple trapping of up to 25 particles using a 200 mW laser diode operating at 830 nm. Arbitrary array beam configurations are also shown where the shape, position and size can easily be reconfigured and applied for dynamic manipulation of colloidal particles.  相似文献   

5.
Magnetic microparticles or “beads” are used in a variety of research applications from cell sorting through to optical force traction microscopy. The magnetic properties of such particles can be tailored for specific applications with the uniformity of individual beads critical to their function. However, the majority of magnetic characterization techniques quantify the magnetic properties from large bead ensembles. Developing new magnetic imaging techniques to evaluate and visualize the magnetic fields from single beads will allow detailed insight into the magnetic uniformity, anisotropy, and alignment of magnetic domains. Here, diamond‐based magnetic microscopy is applied to image and characterize individual magnetic beads with varying magnetic and structural properties: ferromagnetic and superparamagnetic/paramagnetic, shell (coated with magnetic material), and solid (magnetic material dispersed in matrix). The single‐bead magnetic images identify irregularities in the magnetic profiles from individual bead populations. Magnetic simulations account for the varying magnetic profiles and allow to infer the magnetization of individual beads. Additionally, this work shows that the imaging technique can be adapted to achieve illumination‐free tracking of magnetic beads, opening the possibility of tracking cell movements and mechanics in photosensitive contexts.  相似文献   

6.
Biocompatibility and high responsiveness to magnetic fields are fundamental requisites to translate magnetic small‐scale robots into clinical applications. The magnetic element iron exhibits the highest saturation magnetization and magnetic susceptibility while exhibiting excellent biocompatibility characteristics. Here, a process to reliably fabricate iron microrobots by means of template‐assisted electrodeposition in 3D‐printed micromolds is presented. The 3D molds are fabricated using a modified two‐photon absorption configuration, which overcomes previous limitations such as the use of transparent substrates, low writing speeds, and limited depth of field. By optimizing the geometrical parameters of the 3D molds, metallic structures with complex features can be fabricated. Fe microrollers and microswimmers are realized that demonstrate motion at ≈20 body lengths per second, perform 3D motion in viscous environments, and overcome higher flow velocities than those of “conventional 3D printed helical microswimmers.” The cytotoxicity of these microrobots is assessed by culturing them with human colorectal cancer (HCT116) cells for four days, demonstrating their good biocompatibility characteristics. Finally, preliminary results regarding the degradation of iron structures in simulated gastric acid liquid are provided.  相似文献   

7.
In nature, cells self‐assemble at the microscale into complex functional configurations. This mechanism is increasingly exploited to assemble biofidelic biological systems in vitro. However, precise coding of 3D multicellular living materials is challenging due to their architectural complexity and spatiotemporal heterogeneity. Therefore, there is an unmet need for an effective assembly method with deterministic control on the biomanufacturing of functional living systems, which can be used to model physiological and pathological behavior. Here, a universal system is presented for 3D assembly and coding of cells into complex living architectures. In this system, a gadolinium‐based nonionic paramagnetic agent is used in conjunction with magnetic fields to levitate and assemble cells. Thus, living materials are fabricated with controlled geometry and organization and imaged in situ in real time, preserving viability and functional properties. The developed method provides an innovative direction to monitor and guide the reconfigurability of living materials temporally and spatially in 3D, which can enable the study of transient biological mechanisms. This platform offers broad applications in numerous fields, such as 3D bioprinting and bottom‐up tissue engineering, as well as drug discovery, developmental biology, neuroscience, and cancer research.  相似文献   

8.
Room temperature magnetic skyrmions in magnetic multilayers are considered as information carriers for future spintronic applications. Currently, a detailed understanding of the skyrmion stabilization mechanisms is still lacking in these systems. To gain more insight, it is first and foremost essential to determine the full real‐space spin configuration. Here, two advanced X‐ray techniques are applied, based on magnetic circular dichroism, to investigate the spin textures of skyrmions in [Ta/CoFeB/MgO]n multilayers. First, by using ptychography, a high‐resolution diffraction imaging technique, the 2D out‐of‐plane spin profile of skyrmions with a spatial resolution of 10 nm is determined. Second, by performing circular dichroism in resonant elastic X‐ray scattering, it is demonstrated that the chirality of the magnetic structure undergoes a depth‐dependent evolution. This suggests that the skyrmion structure is a complex 3D structure rather than an identical planar texture throughout the layer stack. The analyses of the spin textures confirm the theoretical predictions that the dipole–dipole interactions together with the external magnetic field play an important role in stabilizing sub‐100 nm diameter skyrmions and the hybrid structure of the skyrmion domain wall. This combined X‐ray‐based approach opens the door for in‐depth studies of magnetic skyrmion systems, which allows for precise engineering of optimized skyrmion heterostructures.  相似文献   

9.
The fascinating electronic and optoelectronic properties of free‐standing graphene has led to the exploration of alternative two‐dimensional materials that can be easily integrated with current generation of electronic technologies. In contrast to 2D oxide and dichalcogenides, elemental 2D analogues of graphene, which include monolayer silicon (silicene), are fast emerging as promising alternatives, with predictions of high degree of integration with existing technologies. This article reviews this emerging class of 2D elemental materials – silicene, germanene, stanene, and phosphorene – with emphasis on fundamental properties and synthesis techniques. The need for further investigations to establish controlled synthesis techniques and the viability of such elemental 2D materials is highlighted. Future prospects harnessing the ability to manipulate the electronic structure of these materials for nano‐ and opto‐electronic applications are identified.  相似文献   

10.
2D magnetic materials have generated an enormous amount of attention due to their unique 2D‐limited magnetism and their potential applications in spintronic devices. Recently, most of this research has focused on 2D van der Waals layered magnetic materials exfoliated from the bulk with random size and thicknesses. Controllable growth of these materials is still a great challenge. In contrast, 2D nonlayered magnetic materials have rarely been investigated, not especially regarding their preparation. CrnX (X = S, Se and Te; 0 < n < 1), a class of nonlayered transition metal dichalcogenides, has rapidly attracted extensive attention due to its abundance of structural compounds and unique magnetic properties. Herein, the controlled synthesis of ultrathin CrSe crystals, with grain size reaching the sub‐millimeter scale, on mica substrates via an ambient pressure chemical vapor deposition (CVD) method is demonstrated. A continuous CrSe film can also be achieved via precise control of the key growth parameters. Importantly, the CVD‐grown 2D CrSe crystals possess obvious ferromagnetic properties at temperatures below 280 K, which has not been observed experimentally before. This work broadens the scope of the CVD growth of 2D magnetic materials and highlights their significant application possibilities in spintronics.  相似文献   

11.
Controlled photonic manipulation of proteins and other nanomaterials   总被引:1,自引:0,他引:1  
Chen YF  Serey X  Sarkar R  Chen P  Erickson D 《Nano letters》2012,12(3):1633-1637
The ability to controllably handle the smallest materials is a fundamental enabling technology for nanoscience. Conventional optical tweezers have proven useful for manipulating microscale objects but cannot exert enough force to manipulate dielectric materials smaller than about 100 nm. Recently, several near-field optical trapping techniques have been developed that can provide higher trapping stiffness, but they tend to be limited in their ability to reversibly trap and release smaller materials due to a combination of the extremely high electromagnetic fields and the resulting local temperature rise. Here, we have developed a new form of photonic crystal "nanotweezer" that can trap and release on-command Wilson disease proteins, quantum dots, and 22 nm polymer particles with a temperature rise less than ~0.3 K, which is below the point where unwanted fluid mechanical effects will prevent trapping or damage biological targets.  相似文献   

12.
This article provides an overview of current research activities on the synthesis and applications of magnetic nanocomposites, especially highlights their potential environmental remediations such as heavy metal (Cr, As, Pd, Hg) removal. After a brief introduction of the emergency situation of heavy metal pollution all over the world and current techniques designed to deal with these situations, different synthetic methods to fabricate various types of magnetic nanocomposites will be reviewed. The focus is to reveal the advantages of magnetic nanocomposites as an efficient adsorbent which is able to reduce the heavy metal concentrations well below the EPA requirement. At the same time, the conventional process can be redesigned to be an economic and energetic one without using extra energy to recycle the adsorbent, which is desired for future. This review mainly deals with the heavy metal removal using magnetic nanocomposites, the adsorption behaviors of heavy metal ions on the surface of novel adsorbents are well investigated including the concentration effect of both contaminants and adsorbents, adsorption kinetics, solution pH effect with regards to real application.  相似文献   

13.
Xu S  Li Y  Lou L 《Applied optics》2005,44(13):2667-2672
Optical tweezers, which utilize radiation pressure to control and manipulate microscopic particles, are used for a large number of applications in biology and colloid science. In most applications a single optical tweezers is used to control one single particle. However, two or more particles can be trapped simultaneously. Although this characteristic has been used in applications, no theoretical analysis of the trapping force or the status of the trapped particles is available to our knowledge. We present our calculation, using a ray optics model, of the axial trapping forces on two rigid particles trapped in optical tweezers. The spherical aberration that results from a mismatch of the refractive indices of oil and water is also considered. The results show that the forces exerted by the optical tweezers on the two particles will cause the two particles to touch each other, and the two particles can be stably trapped at a joint equilibrium point. We also discuss the stability of axial trapping. The calculation will be useful in applications of optical tweezers to trap multiple particles.  相似文献   

14.
2D transition metal dichalcogenides have attracted much attention in the field of spintronics due to their rich spin‐dependent properties. The promise of highly compact and low‐energy‐consumption spin‐orbit torque (SOT) devices motivates the search for structures and materials that can satisfy the requirements of giant perpendicular magnetic anisotropy (PMA) and large SOT simultaneously in SOT‐based magnetic memory. Here, it is demonstrated that PMA and SOT in a heavy metal/transition metal ferromagnet structure, Pt/[Co/Ni]2, can be greatly enhanced by introducing a molybdenum disulfide (MoS2) underlayer. According to first‐principles calculation and X‐ray absorption spectroscopy (XAS), the enhancement of the PMA is ascribed to the modification of the orbital hybridization at the interface of Pt/Co due to MoS2. The enhancement of SOT by the role played by MoS2 is explained, which is strongly supported by the identical behavior of SOT and PMA as a function of Pt thickness. This work provides new possibilities to integrate 2D materials into promising spintronics devices.  相似文献   

15.
Nature provides a successful evolutionary direction for single-celled organisms to solve complex problems and complete survival tasks – pseudopodium. Amoeba, a unicellular protozoan, can produce temporary pseudopods in any direction by controlling the directional flow of protoplasm to perform important life activities such as environmental sensing, motility, predation, and excretion. However, creating robotic systems with pseudopodia to emulate environmental adaptability and tasking capabilities of natural amoeba or amoeboid cells remains challenging. Here, this work presents a strategy that uses alternating magnetic fields to reconfigure magnetic droplet into Amoeba-like microrobot, and the mechanisms of pseudopodia generation and locomotion are analyzed. By simply adjusting the field direction, microrobots switch in monopodia, bipodia, and locomotion modes, performing all pseudopod operations such as active contraction, extension, bending, and amoeboid movement. The pseudopodia endow droplet robots with excellent maneuverability to adapt to environmental variations, including spanning 3D terrains and swimming in bulk liquids. Inspired by the “Venom,” the phagocytosis and parasitic behaviors have also been investigated. Parasitic droplets inherit all the capabilities of amoeboid robot, expanding their applicable scenarios such as reagent analysis, microchemical reactions, calculi removal, and drug-mediated thrombolysis. This microrobot may provide fundamental understanding of single-celled livings, and potential applications in biotechnology and biomedicine.  相似文献   

16.
Structural color hydrogels are promising candidates as scaffold materials for tissue engineering and for matrix cell culture and manipulation, while their super‐elastic features are still lacking due to the irreconcilable interfere of the precursor and the self‐assembly unit. This hinders many of their practical biomedical applications where elasticity is required. Herein, hydrophilic and size‐controllable Fe3O4@poly(4‐styrenesulfonic acid‐co‐maleic acid) (PSSMA)@SiO2 magnetic response photonic crystals are fabricated as the assembly units of the structural color hydrogels by orderly packing of core–shell colloidal nanocrystal clusters via a two‐step facile synthesis approach. These units are capable of responding instantaneously to an external magnetic field with resistance to interference of ions, thus, by integrating super‐elastic hydrogels, super‐elastic magnetic structural color hydrogels can be achieved. The structural color arises from the dynamic ordering of the magnetic nanoparticles through the contactless control of external magnetic field, allowing regional polymerization of hydrogels via changing orientation and strength of external magnetic field. These regionally polymerized super‐elastic magnetic structural color hydrogels can work as anti‐counterfeiting labels with super‐elastic identification, which may be widely used in the future.  相似文献   

17.
Recent advances on the organization and characterization of [Mn12] single molecule magnets (SMMs) on a surface or in 3D are reviewed. By using nonconventional techniques such as X‐ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM), it is shown that [Mn12]‐based SMMs deposited on a surface lose their SMM behavior, even though the molecules seem to be structurally undamaged. A new approach is reported to get high‐density information‐storage devices, based on the 3D assembling of SMMs in a liquid crystalline phase. The 3D nanostructure exhibits the anisotropic character of the SMMs, thus opening the way to address micrometric volumes by two photon absorption using the pump‐probe technique. We present recent developments such as µ‐SQUID, magneto‐optical Kerr effect (MOKE), or magneto‐optical circular dichroism (MOCD), which enable the characterization of SMM nanostructures with exceptional sensitivity. Further, the spin‐polarized version of the STM under ultrahigh vacuum is shown to be the key tool for addressing not only single molecule magnets, but also magnetic nano‐objects.  相似文献   

18.
This paper deals with the theoretical combination of magnetic forces, centrifugal forces, and gravity acting on low-χ magnetic fluids contained within a cylindrical shaped zone with a horizontal axis. The magnetic field is created by a combination of both quadrupolar winding and dipolar fields, as exists in superconducting coils developed for particle accelerators. Such a ground based device, if static, simulates a rotation – in space conditions – of a paramagnetic substance such as liquid oxygen. When the cylinder rotates, it creates exact gravity compensation – on Earth – for diamagnetic fluids such as hydrogen. These results go beyond a previous result that found it impossible to reach perfect magnetic compensation of gravity in a 3D domain.  相似文献   

19.
1D core–shell magnetic materials with mesopores in shell are highly desired for biocatalysis, magnetic bioseparation, and bioenrichment and biosensing because of their unique microstructure and morphology. In this study, 1D magnetic mesoporous silica nanochains (Fe3O4@nSiO2@mSiO2 nanochain, Magn‐MSNCs named as FDUcs‐17C) are facilely synthesized via a novel magnetic‐field‐guided interface coassembly approach in two steps. Fe3O4 particles are coated with nonporous silica in a magnetic field to form 1D Fe3O4@nSiO2 nanochains. A further interface coassembly of cetyltrimethylammonium bromide and silica source in water/n‐hexane biliquid system leads to 1D Magn‐MSNCs with core–shell–shell structure, uniform diameter (≈310 nm), large and perpendicular mesopores (7.3 nm), high surface area (317 m2 g?1), and high magnetization (34.9 emu g?1). Under a rotating magnetic field, the nanochains with loaded zoledronate (a medication for treating bone diseases) in the mesopores, show an interesting suppression effect of osteoclasts differentiation, due to their 1D nanostructure that provides a shearing force in dynamic magnetic field to induce sufficient and effective reactions in cells. Moreover, by loading Au nanoparticles in the mesopores, the 1D Fe3O4@nSiO2@mSiO2‐Au nanochains can service as a catalytically active magnetic nanostirrer for hydrogenation of 4‐nitrophenol with high catalytic performance and good magnetic recyclability.  相似文献   

20.
In this work, a scalable automated approach for fabricating 3D microgranular crystals consisting of desired arrangements of microspheres using holographic optical tweezers and two‐photon polymerization is introduced. The ability to position microspheres as desired within lattices of any configuration allows designers to engineer the behavior of new metamaterials that enable advanced applications (e.g., armor that mitigates or redirects shock waves, acoustic lens for underwater imaging, damage detection, and noninvasive surgery, acoustic cloaking, and photonic crystals). Currently, no self‐assembly or automated approaches exist with the flexibility necessary to place specific microspheres at specific locations within a crystal. Moreover, most pick‐and‐place approaches require the manual assembly of spheres one by one and thus do not achieve the speed and precision required to repeatably fabricate practical volumes of engineered crystals. In this paper, the rapid assembly of 4.86 µm diameter silica spheres within differently packed 3D crystal‐lattice examples of unprecedented size using fully automated optical tweezers is demonstrated. The optical tweezers independently and simultaneously assemble batches of spheres that are dispensed to the build site via an automated syringe pump where the spheres are then joined together within previously unattainable patterns by curing regions of photocurable prepolymer between each sphere using two‐photon polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号