首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10?4 W cm?2 °C?1, similar to that of glass (11.1 × 10?4 W cm?2 °C?1) but smaller than that of chromium (17.1 × 10?4 W cm?2 °C?1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems.  相似文献   

2.
CW output power of a sandwich-type Gunn diode was calculated numerically as functions of diode area and input power density. It was shown that output power has a maximum against diode area and that the maximum power as well as the corresponding diode area increases steeply as the power dissipation density decreases within a reasonable nl product range. The latter relation still holds when the temperature rise of the active layer is limited within a certain value. For an X-band Gunn diode with room temperature efficiency of 6% and mounted on a cylindrical copper heat sink, the available power with a temperature rise of 170°C was about 1W when input power density was 2 × 104 W/cm2(nl ? 1 × 1012cm?2), while the available power was about 0·25 W when input power density was 4 × 104 W/cm2(nl ? 2 × 1012cm?2).  相似文献   

3.
Oriented microstructures are widely found in various biological systems for multiple functions. Such anisotropic structures provide low tortuosity and sufficient surface area, desirable for the design of high‐performance energy storage devices. Despite significant efforts to develop supercapacitors with aligned morphology, challenges remain due to the predefined pore sizes, limited mechanical flexibility, and low mass loading. Herein, a wood‐inspired flexible all‐solid‐state hydrogel supercapacitor is demonstrated by morphologically tuning the aligned hydrogel matrix toward high electrode‐materials loading and high areal capacitance. The highly aligned matrix exhibits broad morphological tunability (47–12 µm), mechanical flexibility (0°–180° bending), and uniform polypyrrole loading up to 7 mm thick matrix. After being assembled into a solid‐state supercapacitor, the areal capacitance reaches 831 mF cm?2 for the 12 µm matrix, which is 259% times of the 47 µm matrix and 403% times of nonaligned matrix. The supercapacitor also exhibits a high energy density of 73.8 µWh cm?2, power density of 4960 µW cm?2, capacitance retention of 86.5% after 1000 cycles, and bending stability of 95% after 5000 cycles. The principle to structurally design the oriented matrices for high electrode material loading opens up the possibility for advanced energy storage applications.  相似文献   

4.
Fiber‐shaped micro‐supercapacitors (micro‐SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic‐directed strategy to synthesize homogeneous nitrogen‐doped porous graphene fibers. The porous fibers‐based micro‐SCs utilize solid‐state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate/poly(vinylidenefluoride‐co‐hexafluoropropylene) (EMIBF4/PVDF‐HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm?2), high cycling‐stability, and long‐term bending‐durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7–46.9 µWh cm?2 at power densities of 1.5–15 W cm?2 are obtained in EMIBF4/PVDF‐HFP. The key to higher performances stems from microfluidic‐controlled fibers with a uniformly porous network, large specific surface area (388.6 m2 g?1), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m?1) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro‐SCs into flexible and fabric substrates to power audio–visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.  相似文献   

5.
Nickel ethenetetrathiolate (NiETT) polymers are promising n‐type thermoelectric (TE) materials, but their insolubility requires the use of an inert polymer matrix to form films, which is detrimental to the TE performance. In this work, the use of thermal annealing as a post‐treatment process simultaneously enhances the electrical conductivity from 6 ± 2 to 23 ± 3 S cm?1 and thermopower from ?28 ± 3 to ?74 ± 4 µV K?1 for NiETT/PVDF composite films. Spectroscopic characterization reveals that the underlying mechanism involves removal of residual solvent and volatile impurities (carbonyl sulfide and water) in the NiETT polymer backbone. Additionally, microscopic characterization reveals morphological changes caused by a densification of the film that improves chain packing. These effects result in a 25 × improvement in power factor from 0.5 to 12.5 µW m?1 K?2 for NiETT/PVDF films and provide insight into the composition of these coordination polymers that maintain their stability under ambient conditions.  相似文献   

6.
The Joule heating properties of an ultralight nanocarbon aerogel are investigated with a view to potential applications as energy‐efficient, local gas heater, and other systems. Thermally reduced graphene oxide (rGO) aerogels (10 mg cm?3) with defined shape are produced via emulsion‐templating. Relevant material properties, including thermal conductivity, electrical conductivity and porosity, are assessed. Repeatable Joule heating up to 200 °C at comparatively low voltages (≈1 V) and electrical power inputs (≈2.5 W cm?3) is demonstrated. The steady‐state core and surface temperatures are measured, analyzed and compared to analogous two‐dimensional nanocarbon film heaters. The assessment of temperature uniformity suggests that heat losses are dominated by conductive and convective heat dissipation at the temperature range studied. The radial temperature gradient of an uninsulated, Joule‐heated sample is analyzed to estimate the aerogel's thermal conductivity (around 0.4 W m?1 K?1). Fast initial Joule heating kinetics and cooling rates (up to 10 K s?1) are exploited for rapid and repeatable temperature cycling, important for potential applications as local gas heaters, in catalysis, and for regenerable of solid adsorbents. These principles may be relevant to wide range of nanocarbon networks and applications.  相似文献   

7.
A simple catalysis‐free approach that utilises a gas–solid reaction for the synthesis of large‐scale single‐crystalline PrB6 nanorods using Pr and BCl3 as starting materials is demonstrated. The nanorods exhibit a low turn‐on electric field (2.80 V µ‐b;m?1 at 10 µ‐b;A cm?2), a low threshold electric field (6.99 V µ‐b;m?1 at 1 mA cm?2), and a high current density (1.2 mA cm?2 at 7.35 V µ‐b;m?1) at room temperature (RT). The turn‐on and threshold electric field are found to decrease clearly from 2.80 to 0.95 and 6.99 to 3.55 V µ‐b;m?1, respectively, while the emission current density increases significantly from 1.2 to 13.8 mA cm?2 (at 7.35 V µ‐b;m?1) with an increase in the ambient temperature from RT to 623 K. The field enhancement factor, emission current density, and the dependence of the effective work function with temperature are investigated. The possible mechanism of the temperature‐dependent emission from PrB6 nanorods is discussed.  相似文献   

8.
Meniscus‐guided coating (MGC) is mainly applicable on the soluble organic semiconductors with strong π–π overlap for achieving single‐crystalline organic thin films and high‐performance organic field‐effect‐transistors (OFETs). In this work, four elementary factors including shearing speed (v), solute concentration (c), deposition temperature (T), and solvent boiling point (Tb) are unified to analyze crystal growth behavior in the meniscus‐guided coating. By carefully varying and studying these four key factors, it is confirmed that v is the thickness regulation factor, while c is proportional to crystal growth rate. The MGC crystal growth rate is also correlated to latent heat (L) of solvents and deposition temperature in an Arrhenius form. The latent heat of solvents is proportional to Tb. The OFET channels grown by the optimized MGC parameters show uniform crystal morphology (Roughness Rq < 0.25 nm) with decent carrier mobilities (average µ = 5.88 cm2 V?1 s?1 and highest µ = 7.68 cm2 V?1 s?1). The studies provide a generalized formula to estimate the effects of these fabrication parameters, which can serve as crystal growth guidelines for the MGC approach. It is also an important cornerstone towards scaling up the OFETs for the sophisticated organic circuits or mass production.  相似文献   

9.
Lithium‐ion batteries have undergone a remarkable development in the past 30 years. However, conventional electrodes are insufficient for the ever‐increasing demand of high‐energy batteries. Here, reported is a thick electrode with a dense structure, as an alternative to the commonly recognized porous framework. A low‐temperature sintering technology with the aid of aqueous solvent, high pressure, and an ion‐conductive additive is originally developed for preparing the LiCoO2 (LCO)/Li4Ti5O12 (LTO) dense‐structure electrode as the representative cathode/anode material. The 400 µm thick cathode with 110 mg cm?2 mass loading achieves a high specific capacity of 131.2 mAh g?1 with a good capacity retention of 96% over 150 cycles, far exceeding the commercial counterpart (≈40 µm) of 54.1 mAh g?1 with 39%. The ultrathick electrode of 1300 µm thickness presents a remarkable area capacity of 28.6 mAh cm?2 that is 16 times that of the commercial electrode. The full cell based on the dense electrodes delivers an extremely high areal capacity of 14.4 mAh cm?2. The ion‐diffusion coefficients of the densely sintered electrodes increase by nearly three orders of magnitude. This design opens up a new avenue for scalable and sustainable material manufacturing towards various practical applications.  相似文献   

10.
Solution‐phase exfoliated graphene has always been an attractive material for flexible thermoelectric applications, but traditional oxidative routes suffer from poor flake quality and a lack of quality doping techniques to make complementary n‐type and p‐type films. Here, it is demonstrated that by changing the adsorbed surfactant during the intercalation‐exfoliation process (polyvinylpyrrolidone for n‐type, pyrenebutyric acid for p‐type), both extremely high electrical conductivity (3010 and 2330 S cm?1) and high Seebeck coefficients (53.1 and ?45.5 µV K?1) can be achieved. The result is that both of these films show remarkable power factors, over 600 µW m?1 K?2 at room temperature, which is over an order of magnitude better than that in previous works demonstrating complementary n‐type and p‐type graphene thermoelectric films. Based on these films, a full all‐graphene thermoelectric device is constructed as a proof of concept, where a peak power of 5.0 nW is recorded at a temperature difference of 50 K.  相似文献   

11.
The impact of the chemical structure and molecular order on the charge transport properties of two donor–acceptor copolymers in their neutral and doped states is investigated. Both polymers comprise 3,7‐bis((E)‐7‐fluoro‐1‐(2‐octyl‐dodecyl)‐2‐oxoindolin‐3‐ylidene)‐3,7‐dihydrobenzo[1,2‐b:4,5‐b′]difuran‐2,6‐dione (FBDOPV) as electron‐accepting unit, copolymerized with 9,9‐dioctyl‐fluorene (P(FBDOPV‐F)) or with 3‐dodecyl‐2,2′‐bithiophene (P(FBDOPV‐2T‐C12)). These copolymers possess an amorphous and semi‐crystalline nature, respectively, and exhibit remarkable electron mobilities of 0.065 and 0.25 cm2 V–1 s–1 in field effect transistors. However, after chemical n‐doping with 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine (N‐DMBI), electrical conductivities four orders of magnitude higher can be achieved for P(FBDOPV‐2T‐C12) (σ = 0.042 S cm?1). More charge‐transfer complexes are formed between P(FBDOPV‐F) and N‐DMBI, but the highly localized polaronic states poorly contribute to the charge transport. Doped P(FBDOPV‐2T‐C12) exhibits a negative Seebeck coefficient of –265 µV K?1 and a thermoelectric power factor (PF) of 0.30 µW m?1 K?2 at 303 K which increases to 0.72 µW m?1 K?2 at 388 K. The in‐plane thermal conductivity (κ|| = 0.53 W m?1 K?1) on the same micrometer‐thick solution‐processed film is measured, resulting in a figure of merit (ZT) of 5.0 × 10?4 at 388 K. The results provide important design guidelines to improve the doping efficiency and thermoelectric properties of n‐type organic semiconductors.  相似文献   

12.
Wire‐shaped electrodes for solid‐state cable‐type supercapacitors (SSCTS) with high device capacitance and ultrahigh rate capability are prepared by depositing poly(3,4‐ethylenedioxythiophene) onto self‐doped TiO2 nanotubes (D‐TiO2) aligned on Ti wire via a well‐controlled electrochemical process. The large surface area, short ion diffusion path, and high electrical conductivity of these rationally engineered electrodes all contribute to the energy storage performance of SSCTS. The cyclic voltammetric studies show the good energy storage ability of the SSCTS even at an ultrahigh scan rate of 1000 V s?1, which reveals the excellent instantaneous power characteristics of the device. The capacitance of 1.1 V SSCTS obtained from the charge–discharge measurements is 208.36 µF cm?1 at a discharge current of 100 µA cm?1 and 152.36 µF cm?1 at a discharge current of 2000 µA cm?1, respectively, indicating the ultrahigh rate capability. Furthermore, the SSCTS shows superior cyclic stability during long‐term (20 000 cycles) cycling, and also maintains excellent performance when it is subjected to bending and succeeding straightening process.  相似文献   

13.
Very recently, electric‐field‐induced superconductivity in an insulator was realized by tuning charge carrier to a high density level (1 × 1014 cm?2). To increase the maximum attainable carrier density for electrostatic tuning of electronic states in semiconductor field‐effect transistors is a hot issue but a big challenge. Here, ultrahigh density carrier accumulation is reported, in particular at low temperature, in a ZnO field‐effect transistor gated by electric double layers of ionic liquid (IL). This transistor, called an electric double layer transistor (EDLT), is found to exhibit very high transconductance and an ultrahigh carrier density in a fast, reversible, and reproducible manner. The room temperature capacitance of EDLTs is found to be as large as 34 µF cm?2, deduced from Hall‐effect measurements, and is mainly responsible for the carrier density modulation in a very wide range. Importantly, the IL dielectric, with a supercooling property, is found to have charge‐accumulation capability even at low temperatures, reaching an ultrahigh carrier density of 8×1014 cm?2 at 220 K and maintaining a density of 5.5×1014 cm?2 at 1.8 K. This high carrier density of EDLTs is of great importance not only in practical device applications but also in fundamental research; for example, in the search for novel electronic phenomena, such as superconductivity, in oxide systems.  相似文献   

14.
Sn‐based perovskites are promising Pb‐free photovoltaic materials with an ideal 1.3 eV bandgap. However, to date, Sn‐based thin film perovskite solar cells have yielded relatively low power conversion efficiencies (PCEs). This is traced to their poor photophysical properties (i.e., short diffusion lengths (<30 nm) and two orders of magnitude higher defect densities) than Pb‐based systems. Herein, it is revealed that melt‐synthesized cesium tin iodide (CsSnI3) ingots containing high‐quality large single crystal (SC) grains transcend these fundamental limitations. Through detailed optical spectroscopy, their inherently superior properties are uncovered, with bulk carrier lifetimes reaching 6.6 ns, doping concentrations of around 4.5 × 1017 cm?3, and minority‐carrier diffusion lengths approaching 1 µm, as compared to their polycrystalline counterparts having ≈54 ps, ≈9.2 × 1018 cm?3, and ≈16 nm, respectively. CsSnI3 SCs also exhibit very low surface recombination velocity of ≈2 × 103 cm s?1, similar to Pb‐based perovskites. Importantly, these key parameters are comparable to high‐performance p‐type photovoltaic materials (e.g., InP crystals). The findings predict a PCE of ≈23% for optimized CsSnI3 SCs solar cells, highlighting their great potential.  相似文献   

15.
The reactive ion etching (RIE) technique has been shown to produce high-performance n-on-p junctions by localized-type conversion of p-type mid-wavelength infrared (MWIR) HgCdTe material. This paper presents variable area analysis of n-on-p HgCdTe test diodes and data on two-dimensional (2-D) arrays fabricated by RIE. All devices were fabricated on x = 0.30 to 0.31 liquid-phase epitaxy (LPE) grown p-type (p = ∼1 × 1016 cm−3) HgCdTe wafers obtained from Fermionics Corp. The diameter of the circular test diodes varied from 50 μm to 600 μm. The 8 × 8 arrays comprised of 50 μm × 50 μm devices on a 100-μm pitch, and all devices were passivated with 5000 ? of thermally deposited CdTe. At temperatures >145 K, all devices are diffusion limited; at lower temperatures, generation-recombination (G-R) current dominates. At the lowest measurement temperature (77 K), the onset of tunneling can be observed. At 77 K, the value of 1/R0A for large devices shows quadratic dependence on the junction perimeter/area ratio (P/A), indicating the effect of surface leakage current at the junction perimeter, and gives an extracted bulk value for R0A of 2.8 × 107 Ω cm2. The 1/R0A versus P/A at 195 K exhibits the well-known linear dependence that extrapolates to a bulk value for R0A of 17.5 Ω cm2. Measurements at 77 K on the small 8 × 8 test arrays were found to demonstrate very good uniformity with an average R0A = 1.9 × 106 Ω cm2 with 0° field of view and D* = 2.7 × 1011cm Hz1/2/W with 60° field of view looking at 300 K background.  相似文献   

16.
Flexible fiber‐based supercapacitor (FSC) with excellent electrochemical performance and high tensile strength and modulus is strongly desired for some special circumstances, such as load‐bearing, abrasion resistant, and anticutting fabrics. Here, a series of ultrahigh‐strength fiber electrodes are prepared for flexible FSCs based on ultrahigh molecular weight polyethylene fibers, on which the polydopamine, Ag, and poly (3,4‐ethylene dioxythiophene): poly(styrenesulfonate) are deposited in sequence. The modified fiber‐based electrode exhibits superhigh strength up to 3.72 GPa, which is the highest among fiber‐based electrodes reported to date. In addition, FSCs fabricated with the optimized fiber electrode shows a specific areal capacity as high as 563 mF cm?2 at 0.17 mA cm?2, which corresponds to a high areal energy density of ≈50.1 µWh cm?2 at a power density of ≈124 µW cm?2. The specific areal capacity only decrease 8% after 1000 times bending test, indicating the outstanding bending performance of this composite fiber electrode. Furthermore, several FSCs can be connected in series or in parallel to get higher working voltage or higher capacity respectively, which demonstrates its potential for broad applications in flexible devices.  相似文献   

17.
The developments of rationally designed binder‐free metal chalcogenides decorated flexible electrodes are of paramount importance for advanced energy storage devices. Herein, binder‐free patronite (VS4) flower‐like nanostructures are facilely fabricated on a carbon cloth (CC) using a facile hydrothermal method for high‐performance supercapacitors. The growth density and morphology of VS4 nanostructures on CC are also controlled by varying the concentrations of vanadium and sulfur sources along with the complexing agent in the growth solution. The optimal electrode with an appropriate growth concentration (VS4‐CC@VS‐3) demonstrates a considerable pseudocapacitance performance in the ionic liquid (IL) electrolyte (1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate), with a high operating potential of 2 V. Utilizing VS4‐CC@VS‐3 as both positive and negative electrodes, the IL‐based symmetric supercapacitor is assembled, which demonstrates a high areal capacitance of 536 mF cm?2 (206 F g?1) and excellent cycling durability (93%) with superior energy and power densities of 74.4 µWh cm?2 (28.6 Wh kg?1) and 10154 µW cm?2 (9340 W kg?1), respectively. As for the high energy storage performance, the device stably energizes various portable electronic applications for a long time, which make the fabricated composite material open up news for the fabrication of fabrics supported binder‐free chalcogenides for high‐performance energy storage devices.  相似文献   

18.
In this paper we report the results of an extensive study on the far-infrared photoconductivity of high purityn-type GaAs. The crystal, which was grown at Max-Plank-Institute for Solid State Physics using liquid-phase epitaxy, exhibited the fine structures of the excited state transitions of the residual shallow level impurities. The major peak in the spectral response belongs to the 1s-2p transition, with its responsivity about thirty five times higher than the continuum. At 3.4K detector temperature, 625 mV bias, and 100 Hz chopping frequency the detector responsivity at 35.4 cm?1 (279 µm) was measured to be 0.017 A/W. Under these same conditions, the NEP was 5.9×10?14 W/√Hz. The (DC) dark current at 25 mV bias was 5.6×10?14 A.  相似文献   

19.
A new amorphous molecular material, tris[4‐(5‐phenylthiophen‐2‐yl)phenyl]amine (TPTPA), is synthesized and characterized. TPTPA forms a stable amorphous glass with a glass‐transition temperature of 83 °C when the melt sample is cooled. It also forms amorphous thin films by a thermal deposition technique. TPTPA exhibits a hole drift mobility of 1.0 × 10?2 cm2 V?1 s?1 at an electric field of 1.0 × 105 V cm?1 and at 293 K, as determined by the time‐of‐flight method, which is of the highest level among those of amorphous molecular materials. pn‐Heterojunction organic photovoltaic devices (OPVs) using TPTPA as an electron donor and C60 or C70 as an electron acceptor exhibit high performance with fill factors of 0.66~0.71 and power conversion efficiencies of 1.7~2.2% under air‐mass (AM) 1.5G illumination at an intensity of 100 mW cm?2, which are of the highest level ever reported for OPVs using amorphous molecular materials.  相似文献   

20.
A new approach to ubiquitous sensing for indoor applications is presented, using low‐cost indoor perovskite photovoltaic cells as external power sources for backscatter sensors. Wide‐bandgap perovskite photovoltaic cells for indoor light energy harvesting are presented with the 1.63 and 1.84 eV devices that demonstrate efficiencies of 21% and 18.5%, respectively, under indoor compact fluorescent lighting, with a champion open‐circuit voltage of 0.95 V in a 1.84 eV cell under a light intensity of 0.16 mW cm?2. Subsequently, a wireless temperature sensor self‐powered by a perovskite indoor light‐harvesting module is demonstrated. Three perovskite photovoltaic cells are connected in series to create a module that produces 14.5 µW output power under 0.16 mW cm?2 of compact fluorescent illumination with an efficiency of 13.2%. This module is used as an external power source for a battery‐assisted radio‐frequency identification temperature sensor and demonstrates a read range by of 5.1 m while maintaining very high frequency measurements every 1.24 s. The combined indoor perovskite photovoltaic modules and backscatter radio‐frequency sensors are further discussed as a route to ubiquitous sensing in buildings given their potential to be manufactured in an integrated manner at very low cost, their lack of a need for battery replacement, and the high frequency data collection possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号