首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Materials exhibiting persistent luminescence (PersL) have great prospect in optoelectronic and biomedical applications such as optical information storage, bio‐imaging, and so on. Unfortunately, PersL materials with multimode emission properties have been rarely reported, although they are expected to be very desirable in multilevel anti‐counterfeiting and encryption applications. Herein, Cr3+‐doped zinc aluminum germanium (ZAG:Cr) nanoparticles exhibiting triple‐mode emissions are designed and demonstrated. Upon exposure to steady 254 nm UV light, the ZAG:Cr nanoparticles yield steady bluish‐white emission. After turning off the UV light, the emission disappears quickly and the mode switches to transient near‐infrared (NIR) PersL emission at predominantly 690 nm. The transient NIR PersL emission which arises from Cr3+ is induced by non‐equivalent substitution of Ge4+. After persisting for 50 min, it can be retriggered by 980 nm photons due to the continuous trap depth distribution of ZAG:Cr between 0.65 and 1.07 eV. Inspired by the triple‐mode emissions from ZAG:Cr, multifunctional luminescent inks composed of ZAG:Cr nanoparticles are prepared, and high‐security labeling and encoding encryption properties are demonstrated. The results indicate that ZAG:Cr nanoparticles have great potential in anti‐counterfeiting and encryption applications, and the strategy and concept described here provide insights into the design of advanced anti‐counterfeiting materials.  相似文献   

3.
This study introduces multifunctional lipid nanoparticles (LNPs), mimicking the structure and compositions of low‐density lipoproteins, for the tumor‐targeted co‐delivery of anti‐cancer drugs and superparamagnetic nanocrystals. Paclitaxel (4.7 wt%) and iron oxide nanocrystals (6.8 wt%, 11 nm in diameter) are co‐encapsulated within folate‐functionalized LNPs, which contain a cluster of nanocrystals with an overall diameter of about 170 nm and a zeta potential of about ‐40 mV. The folate‐functionalized LNPs enable the targeted detection of MCF‐7, human breast adenocarcinoma expressing folate receptors, in T2‐weighted magnetic resonance images as well as the efficient intracellular delivery of paclitaxel. Paclitaxel‐free LNPs show no significant cytotoxicity up to 0.2 mg mL?1, indicating the excellent biocompatibility of the LNPs for intracellular drug delivery applications. The targeted anti‐tumor activities of the LNPs in a mouse tumor model suggest that the low‐density lipoprotein‐mimetic LNPs can be an effective theranostic platform with excellent biocompatibility for the tumor‐targeted co‐delivery of various anti‐cancer agents.  相似文献   

4.
Herein, well‐defined Pd nanoparticles (NPs) developed on Ni substrate (Pd NPs/Ni) are synthesized via a facile galvanic replacement reaction (GRR) route performed in ethaline‐based deep eutectic solvent (DES). For comparison, a Pd NPs/Ni composite is also prepared by the GRR method conducted in an aqueous solution. The Pd NPs/Ni obtained from the ethaline‐DES is catalytically more active and durable for the methanol electro‐oxidation reaction (MOR) than those of the counterpart derived from conventional aqueous solution and commercial Pd/C under alkaline media. Detailed kinetic analysis indicates that the unique solvent environment offered by ethaline plays vital roles in adjusting the reactivity of the active species and their mass transport properties to control over the genesis of the Pd NPs/Ni nanocomposite. The resulting Pd NPs/Ni catalyst possesses a homogeneous dispersion of Pd NPs with a strong Pd (metal)–Ni (support) interaction. This structure enhances the charge transfer between the support and the active phases, and optimizes the adsorption energy of OH? and CO on the surface, leading to superior electrocatalytic performance. This work provides a novel GRR strategy performed in ethaline‐DES to the rational design and construction of advanced metal/support catalysts with strong interaction for improving the activity and durability for MOR.  相似文献   

5.
6.
7.
Bimetallic nanomaterials (BNMs) have been used in sensing, biomedicine, and environmental remediation, but their multipurpose and comprehensive applications in molecular logic computing and information security protection have received little attention. Herein, This synthesis method is achieved by sequentially adding reactants under ice bath conditions. Interestingly, Ag-Cr NPs can dynamically selectively sense anions and reductants in multiple channels. Especially, ClO can be quantitatively detected by oxidizing Ag-Cr NPs with detection limits of 98.37 nM (at 270 nm) and 31.83 nM (at 394 nm). Based on sequential-dependent synthesis process of Ag-Cr NPs, Boolean logic gates and customizable molecular keypad locks are constructed by setting the reactants as the inputs, the states of the resulting solutions as the outputs. Furthermore, dynamically selective response patterns of the Ag-Cr NPs can be converted into binary strings to exploit molecular crypto-steganography to encode, store, and hide information. By integrating the three dimensions of authorization, encryption, and steganography, 3 in 1 advanced information protection based on Ag-Cr nanosensing system can be achieved, which can enhance the anti-cracking ability of information. This research will promote the development and application of nanocomposites in the field of information security and deepen the connection between molecular sensing and the information world.  相似文献   

8.
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full‐fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.  相似文献   

9.
Comprehensive analysis of sweat chemistry provides noninvasive health monitoring capabilities that complement established biophysical measurements such as heart rate, blood oxygenation, and body temperature. Recent developments in skin‐integrated soft microfluidic systems address many challenges associated with standard technologies in sweat collection and analysis. However, recording of time‐dependent variations in sweat composition requires bulky electronic systems and power sources, thereby constraining form factor, cost, and modes of use. Here, presented are unconventional design concepts, materials, and device operation principles that address this challenge. Flexible galvanic cells embedded within skin‐interfaced microfluidics with passive valves serve as sweat‐activated “stopwatches” that record temporal information associated with collection of discrete microliter volumes of sweat. The result allows for precise measurements of dynamic sweat composition fluctuations using in situ or ex situ analytical techniques. Integrated electronics based on near‐field communication (NFC) protocols or docking stations equipped with standard electronic measurement tools provide means for extracting digital timing results from the stopwatches. Human subject studies of time‐stamped sweat samples by in situ colorimetric methods and ex situ techniques based on inductively coupled plasma mass spectroscopy (ICP‐MS) and chlorodimetry illustrate the ability to quantitatively capture time‐dynamic sweat chemistry in scenarios compatible with field use.  相似文献   

10.
11.
Galvanic replacement reactions (GRRs) on nanoparticles (NPs) are typically performed between two metals, i.e., a solid metal NP and a replacing salt solution of a more noble metal. The solution pH in GRRs is commonly considered an irrelevant parameter. Yet, the solution pH plays a major role in GRRs involving metal oxide NPs. Here, Cu2O nanocrystals (NCs) are studied as galvanic replacement (GR) precursors, undergoing replacement by gold and palladium, with the resulting nanostructures showing a strong dependence on the pH of the replacing metal salt solution. GRRs are reported for the first time on supported (chemically deposited) oxide NCs and the results are compared with those obtained with corresponding colloidal systems. Control of the pH enables production of different nanostructures, from metal‐decorated Cu2O NCs to uniformly coated Cu2O‐in‐metal (Cu2O@Me) core–shell nanoarchitectures. Improved metal nucleation efficiencies at low pHs are attributed to changes in the Cu2O surface charge resulting from protonation of the oxide surface. GR followed by etching of the Cu2O cores provides metal nanocages that collapse upon drying; the latter is prevented using a sol–gel silica overlayer stabilizing the metal nanocages. Metal‐replaced Cu2O NCs and their corresponding stabilized nanostructures may be useful as photocatalysts, electrocatalysts, and nanosensors.  相似文献   

12.
The synthesis of zero‐valent iron (Fe(0)) nanoparticles in pyridine using lithium bipyridinyl ([LiBipy]) or lithium pyridinyl ([LiPy]) is presented. FeCl3 is used as the most simple starting material and reduced either in a [LiBipy]‐driven two‐step approach or in a [LiPy]‐driven one‐pot synthesis. High‐quality nanoparticles are obtained with uniform, spherical shape, and mean diameters of 2.9 ± 0.5 nm ([LiBipy]) or 4.1 ± 0.7 nm ([LiPy]). The as‐prepared, high purity Fe(0) nanoparticles are monocrystalline. In addition to particle characterization (high‐resolution transmission electron microscopy, scanning transmission electron microscopy, dynamic light scattering), composition and purity are examined in detail based on electron diffraction, X‐ray powder diffraction, elemental analysis, infrared spectroscopy, 57Fe Mössbauer spectroscopy, and magnetic measurements. Due to their small size and high purity, the Fe(0) nanoparticles are highly reactive. They can be used in follow‐up reactions to obtain a variety of iron compounds, which is exemplarily shown for the transformation to iron carbide (Fe3C) nanoparticles, the reaction with sulfur to obtain FeS nanoparticles, or the direct reaction with pentamethylcyclopentadiene to FeCp*2 (Cp*: pentamethylcyclopentadienyl).  相似文献   

13.
14.
15.
In this study, surface‐enhanced Raman spectroscopy (SERS)‐encoded magnetic nanoparticles (NPs) are prepared and utilized as a multifunctional tagging material for cancer‐cell targeting and separation. First, silver‐embedded magnetic NPs are prepared, composed of an 18‐nm magnetic core and a 16‐nm‐thick silica shell with silver NPs formed on the surface. After simple aromatic compounds are adsorbed on the silver‐embedded magnetic NPs, they are coated with silica to provide them with chemical and physical stability. The resulting silica‐encapsulated magnetic NPs (M‐SERS dots) produce strong SERS signals and have magnetic properties. In a model application as a tagging material, the M‐SERS dots are successfully utilized for targeting breast‐cancer cells (SKBR3) and floating leukemia cells (SP2/O). The targeted cancer cells can be easily separated from the untargeted cells using an external magnetic field. The separated targeted cancer cells exhibit a Raman signal originating from the M‐SERS dots. This system proves to be an efficient tool for separating targeted cells. Additionally, the magnetic‐field‐induced hot spots, which can provide a 1000‐times‐stronger SERS intensity due to aggregation of the NPs, are studied.  相似文献   

16.
The recent convergence of nanomaterials and medicine has provided an expanding horizon for people to achieve encouraging advances in many biomedical applications such as cancer diagnosis and therapy. However, to realize desirable functions in the rather complex biological systems, a suitable surface coating is greatly in need for nanoparticles (NPs), regardless of the species. In this review, a recently developed surface modification strategy is highlighted—mixed‐charge monolayers—with an emphasis on the nanointerfaces of inorganic NPs. Two typical mixed‐charge gold NPs (AuNPs) prepared from surface modifications with different combinations of oppositely charged alkanethiols are shown as detailed examples to discuss how the mixed‐charge monolayer can help NPs meet the criteria for in vitro and in vivo biomedical applications, including those critical issues like colloidal stability, nonfouling properties, and smart responses (pH‐sensitivity) for tumor targeting.  相似文献   

17.
The development of carbon materials offers the hope for obtaining inexpensive and high‐performance alternatives to substitute noble‐metal catalysts for their sustainable application. Graphdiyne, the rising‐star carbon allotrope, is a big family with many members, and first realized the coexistence of sp‐ and sp2‐hybridized carbon atoms in a 2D planar structure. Different from the prevailing carbon materials, its nonuniform distribution in the electronic structure and wide tunability in bandgap show many possibilities and special inspirations to construct new‐concept metal‐free catalysts, and provide many opportunities for achieving a catalytic activity comparable with that of noble‐metal catalysts. Herein, the recent progress in synthetic methodologies, theoretical predictions, and experimental investigations of graphdiyne for metal‐free catalysts is systematically summarized. Some new perspectives of the opportunities and challenges in developing high‐performance graphdiyne‐based metal‐free catalysts are demonstrated.  相似文献   

18.
This paper reviews the recent research progress in the syntheses and applications of dumbbell‐like nanoparticles (NPs). It first describes the general synthesis of dumbbell‐like NPs that contain noble metal and magnetic NPs/or quantum dots. It then outlines the interesting optical and magnetic properties found in these dumbbell NPs. The review further highlights several exciting application potentials of these NPs in catalysis and biomedicine.  相似文献   

19.
Controllable and efficient synthesis of noble metal/transition‐metal oxide (TMO) composites with tailored nanostructures and precise components is essential for their application. Herein, a general mercaptosilane‐assisted one‐pot coassembly approach is developed to synthesize ordered mesoporous TMOs with agglomerated‐free noble metal nanoparticles, including Au/WO3, Au/TiO2, Au/NbOx, and Pt/WO3. 3‐mercaptopropyl trimethoxysilane is applied as a bridge agent to cohydrolyze with metal oxide precursors by alkoxysilane moieties and interact with the noble metal source (e.g., HAuCl4 and H2PtCl4) by mercapto (? SH) groups, resulting in coassembly with poly(ethylene oxide)‐b‐polystyrene. The noble metal decorated TMO materials exhibit highly ordered mesoporous structure, large pore size (≈14–20 nm), high specific surface area (61–138 m2 g?1), and highly dispersed noble metal (e.g., Au and Pt) nanoparticles. In the system of Au/WO3, in situ generated SiO2 incorporation not only enhances their thermal stability but also induces the formation of ε‐phase WO3 promoting gas sensing performance. Owning to its specific compositions and structure, the gas sensor based on Au/WO3 materials possess enhanced ethanol sensing performance with a good response (Rair/Rgas = 36–50 ppm of ethanol), high selectivity, and excellent low‐concentration detection capability (down to 50 ppb) at low working temperature (200 °C).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号