首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
         下载免费PDF全文
Faraz Kaiser Malik  Kristel Fobelets 《半导体学报》2022,43(10):103101-1-103101-18
Thermal rectification, or the asymmetric transport of heat along a structure, has recently been investigated as a potential solution to the thermal management issues that accompany the miniaturization of electronic devices. Applications of this concept in thermal logic circuits analogous to existing electronics-based processor logic have also been proposed. This review highlights some of the techniques that have been recently investigated for their potential to induce asymmetric thermal conductivity in solid-state structures that are composed of materials of interest to the electronics industry. These rectification approaches are compared in terms of their quantitative performance, as well as the range of practical applications that they would be best suited to. Techniques applicable to a range of length scales, from the continuum regime to quantum dots, are discussed, and where available, experimental findings that build upon numerical simulations or analytical predictions are also highlighted.  相似文献   

3.
    
The requirement of high‐temperature calcination for titanium dioxide in (solid‐state) dye‐sensitized solar cells (DSSCs) implies challenges with respect to reduced energy consumption and the potential for flexible photovoltaic devices. Moreover, the use of dye molecules increases production costs and leads to problems related with dye bleaching. Therefore, fabrication of dye‐free hybrid solar cells at low temperature is a promising alternative for current DSSC technology. In this work the authors fabricate hierarchically structured titania thin films by combining a polystyrene‐block‐polyethylene oxide template assisted sol–gel synthesis with nano‐imprint lithography at low temperatures. The achieved films are filled with poly(3‐hexylthiophene) to form the active layer of hybrid solar cells. The surface morphology is probed via scanning electron microscopy and atomic force microscopy, and the bulk film morphology is examined with grazing incidence X‐ray scattering. Good light absorption by the active layer is proven by UV–vis spectroscopy. An enhancement in light absorption is observed and ascribed to light scattering in mesoporous titania films with imprinted superstructures. Accordingly a better photovoltaic performance is found for nano‐imprinted solar cells at various angles of light incidence.  相似文献   

4.
5.
    
Position‐configurable, vertical, single‐crystalline ZnO nanorod arrays are fabricated via a polymer‐templated hydrothermal growth method at a low temperature of 93 °C. A sol‐gel processed dense c‐oriented ZnO seed layer film is employed to grow nanorods along the c‐axis direction [0001] regardless of any substrate crystal mismatches. Here, one‐beam laser‐interference lithography is utilized to fabricate nanoscale holes over an entire 2‐in. wafer during the preparation of the polymer template. As such, vertically aligned ZnO nanorods can be grown from the seed layer exposed at the bottom of each hole. Furthermore, morphological transformations of the ZnO nanorods into pencil‐like, needle‐like, tubular, tree‐like, and spherical shapes are obtained by controlling the growth conditions and utilizing the structural polarity of the ZnO nanorods.  相似文献   

6.
    
Position‐configurable, vertical, single‐crystalline ZnO nanorod arrays are fabricated via a polymer‐templated hydrothermal growth method at a low temperature of 93 °C. A sol‐gel processed dense c‐oriented ZnO seed layer film is employed to grow nanorods along the c‐axis direction [0001] regardless of any substrate crystal mismatches. Here, one‐beam laser‐interference lithography is utilized to fabricate nanoscale holes over an entire 2‐in. wafer during the preparation of the polymer template. As such, vertically aligned ZnO nanorods can be grown from the seed layer exposed at the bottom of each hole. Furthermore, morphological transformations of the ZnO nanorods into pencil‐like, needle‐like, tubular, tree‐like, and spherical shapes are obtained by controlling the growth conditions and utilizing the structural polarity of the ZnO nanorods.  相似文献   

7.
    
Lithography is one of the most widely used methods for cutting‐edge research and industrial applications, mainly owing to its ability to draw patterns in the micro and even nanoscale. However, the fabrication of semiconductor micro/nanostructures via conventional electron or optical lithography technologies often requires a time‐consuming multistep process and the use of expensive facilities. Herein, a low‐cost, high‐resolution, facile, and versatile direct patterning method based on metal–organic molecular precursors is reported. The ink‐based metal–organic precursors are found to operate as negative resists, with the material exposed by different methods (electron‐beam/laser/heat/ultraviolet (UV)) to render them insoluble in the development process. This technical process can deliver metal chalcogenide semiconductors with arbitrary 2D/3D patterns with sub‐50 nm resolution. Electron beam lithography, two‐photon absorption lithography, thermal scanning probe lithography, and UV photolithography are demonstrated for the direct patterning process. Different metal chalcogenide semiconductor nanodevices, such as photoconductive selenium‐doped Sb2S3 nanoribbons, p‐type PbS single‐nanowire field‐effect transistors, and p‐n junction CdS/Cu2S nanowire solar cells, are fabricated by this method. This direct patterning technique is a versatile and simple micro/nanolithography technology with considerable potential for “lab‐on‐a‐chip” preparation of semiconductor devices.  相似文献   

8.
9.
    
As one of the most robust and versatile routes to fabricate ordered micro‐ and nanostructures, soft lithography has been extensively applied to pattern a variety of molecules, polymers, biomolecules, and nanomaterials. This paper provides an overview on recent developments employing soft lithography methods to pattern colloidal crystals and related nanostructure arrays. Lift‐up soft lithography and modified microcontact printing methods are applied to fabricate patterned and non‐close‐packed colloidal crystals with controllable lattice spacing and lattice structure. Combining selective etching, imprinting, and micromolding methods, these colloidal crystal arrays can be employed as templates for fabrication of nanostructure arrays. Realization of all these processes is favored by the solvent swelling, elasticity, thermodecomposition, and thermoplastic characteristics of polymer materials. Applications of these colloidal crystals and nanostructure arrays have also been explored, such as biomimetic antireflective surfaces, superhydrophobic coatings, surface‐enhanced Raman spectroscopy substrates, and so on.  相似文献   

10.
Colloidal monolayers with high order and increased complexity beyond plain hexagonal packing geometries are useful for 2D templating of surface nanostructures and lithographic applications. Here, binary colloidal monolayers featuring a close‐packed monolayer of large spheres (L) with a superlattice of small particles (S) are prepared in a single step using a Langmuir trough. Adjustment of the stoichiometry of the two particle types at the air–water interface leads to a high degree of control over the occupation of the interstitial sites in the close‐packed layer of large spheres by the small colloids. Thus, large areas of binary 2D crystals with LS2, LS6, and LS9 structures are fabricated in a controlled way. The process allows the formation of binary crystals over a wide range of particle size ratios from 0.19 to 0.40. The pH value of the subphase can be used to enhance the crystallization process by changing the contact angle of the particles at the interface. An interfacial polymerization of butyl cyanoacrylate is used to directly image the contact angle of the colloids at the interface. Transfer to solid substrates is achieved by a surface lowering technique. A variety of substrates with arbitrary topographies can thus be decorated with colloidal monolayers. Applied to a lithographic process, such monolayer architectures allow the generation of complex patterns, not accessible with conventional close‐packed monolayers.  相似文献   

11.
    
An optical method is used to create multi‐dimensional metal structures with three distinct periodicities for surface‐enhanced Raman scattering (SERS). Periodic arrays of nanopillars are formed by phase‐shift interference lithography on sub‐micrometer length scales. With the help of a standing wave, each nanopillar is made to be a disk‐stacking structure consisting of a series of 20‐nm‐thick metal nanogaps; the nanopillars consequently resemble a pagoda. The vertically integrated metal nanogaps of the metal‐deposited pagoda‐like nanopillars enable strong localization of an electromagnetic field and effective enhancement of Raman signals for molecules adsorbed on the metal surface. Moreover, the nanopillars are arranged in a regular lattice, which results in a low spatial variation of the SERS intensity and provides high reproducibility in measurements. Arrays of the nanopillars can be further micropatterned to have a periodicity ranging from tens of micrometers to a millimeter by subsequently employing photo‐lithography. The nanopillar arrays promote the wetting of sample fluids, which enables the selective confinement of fluids on the array regions of the micropatterns without spreading. Consequently, numerous fluid samples can be separately deposited, enabling SERS‐based analysis of multiple samples using a single substrate.  相似文献   

12.
改进了传统稳态加热法的测试结构,设计了带隔离槽的全对称悬空薄膜测试结构,并使用有限元工具对测试结构进行了优化.测量了室温下50和80nm厚度的单晶硅薄膜的横向热导率,分别为32和38W/(m·K),其相对体硅热导率(148W/(m·K))有明显下降,实验结果与BTE(Boltzmann transport equation)的理论预测曲线吻合得很好.  相似文献   

13.
    
Understanding polymer deformation during the nanoimprinting process is key to achieving robust polymer nanostructures. Information regarding this process can be extracted from monitoring the decay of the imprinted polymer patterns during thermal annealing. In the present work, the effect of both the molar mass and the imprinting temperature on the pattern decay behavior during thermal annealing is investigated. Previously, it was found that the decay rate is fastest for a highly entangled polymer due to the elastic recovery caused by the residual stress created during the imprinting process. The present paper demonstrates that this residual stress level can be modified through control of the imprinting temperature. These results are contrasted with those for an unentangled polymer over a similar range of imprinting temperatures, where it is found that the pattern decay is controlled by simple Newtonian flow. In particular, the pattern decay is well described by surface‐tension‐driven viscous flow, and no imprinting‐temperature effect is observed during thermal annealing. It is shown that the stability of the film against pattern decay can be optimized for moderately entangled polymer films. This effect is attributed to the competition between the effect of increased viscosity with increasing molar mass and increased residual stresses with entanglements. These observations provide guidance for the optimization of imprinting process in terms of selection of molar mass and processing temperatures.  相似文献   

14.
    
Direct patterning of oxides using thermal nanoimprint lithography is performed using either the sol‐gel or methacrylate route. The sol‐gel method results in resists with long shelf‐life, but with high surface energy and a considerable amount of solvent that affects the quality of imprinting. The methacrylate route, which is limited to certain oxides, produces polymerizable resists, leading to low surface energy, but suffers from the shorter shelf‐life of precursors. By combining the benignant elements from both these routes, a universal method of direct thermal nanoimprinting of oxides is demonstrated using precursors produced by reacting an alkoxide with a polymerizable chelating agent such as 2‐(methacryloyloxy)ethyl acetoacetate (MAEAA). MAEAA possesses β‐ketoester, which results in the formation of environmentally stable, chelated alkoxide with long shelf‐life, and methacrylate groups, which provide a reactive monomer pendant for in situ copolymerization with a cross‐linker during imprinting. Polymerization leads to trapping of cations, lowering of surface energy, strengthening of imprints, which enables easy and clean demolding over 1 cm × 2 cm patterned area with ≈100% yield. Heat‐treatment of imprints gives amorphous/crystalline oxide patterns. This alliance between two routes enables the successful imprinting of numerous oxides including Al2O3, Ga2O3, In2O3, Y2O3, B2O3, TiO2, SnO2, ZrO2, GeO2, HfO2, Nb2O5, Ta2O5, V2O5, and WO3.  相似文献   

15.
    
The functionalization of zirconia surfaces by accurate and fast printing of periodical patterns embedding sub-micrometric features is of great interest to many engineering fields and is yet to be explored. This study aims to assess the influence of the Direct Laser Interference Patterning processing parameters on the morphology and microstructure of zirconia surfaces using a 532 nm 10 ps-pulsed laser source. Well-defined linear structures with a period of 3 µm are successfully produced. Depending on the laser parameters, the structures are developed at or below the surface level, with higher depths (≈1 µm) being seen for increasing values of laser fluence and pulse overlap. Line-like hierarchical structures with smaller interference spatial structures (3 µm period) and higher secondary structures with different periods (18, 15, and 12 µm) and heights (7, 5, and 3 µm, respectively) are also obtained on zirconia surface. Ablated regions presented few traces of molten material, nano-droplets, and sub-micrometric (<1 µm) pores, while no (sub) micrometric cracks are detected. A slight amount of tetragonal to monoclinic phase transformation (≈5%) is detected by X-ray diffractometry. A processability map for ps-laser processing of zirconia is proposed based on the experimental data.  相似文献   

16.
    
Vertically stacked low-dimensional heterostructures are outstanding systems both for exploring fundamental physics and creating new devices. Due to nanometer-scale building blocks, atomic scale phenomena become for them of fundamental importance, including during device operation. These can be accessed in situ in aberration-corrected scanning transmission electron microscopy (STEM) experiments. Here, the dynamics of a graphene-MoS2 heterostructure are studied under Joule heating, where the graphene serves as a high temperature atomically thin and electron transparent “hot plate” for the MoS2. Structural dynamics and evolution of the system are shown at the atomic scale, demonstrating that at the highest temperatures (estimated to exceed 2000 K), the continuous 2D MoS2 transforms into separated 3D nanocrystals, initiated by sulfur vacancy creation and migration followed by formation of voids and clustering at their edges. The resulting nanocrystals exhibit predominantly hexagonal shapes with the 2H and hybrid (2H/3R, 3R/TZ) polytypes. The observed morphology of the crystals is further discussed during and after the transformation, as well as their different edge configurations and stability under electron irradiation. These observations of MoS2 at extreme temperatures provide insights into the operation of devices based on graphene/MoS2 heterostructures and ultimately may help device fabrication techniques to create MoS2-based nanostructures, for example, in hydrogen evolution reaction applications.  相似文献   

17.
    
Designing a transparent carbon nanotube (CNT) gas sensor for nitrogen dioxide (NO2) detection at room temperature (RT), which is unaffected by humidity, is a critical challenge in various technologies. To solve this issue, a filament-based memristor heater (MH) embedded low-power CNT gas sensor is proposed to address humidity-related issues, and dynamic response with a low power consumption of 6.15 µW and swift recovery of <1 ms/30.8 µW is successfully demonstrated, without any serious effects on humidity. This study reveals that the MH can effectively heat the surface of the active region due to the joule heating effect, which improves the absorption and desorption of the target gases and mitigates the influence on the humidity, which is in a response that is below 7.5%. As a result, it is believed that the proposed MH-embedded transparent CNT gas sensors can address the humidity issues and slow response/recovery with ultralow-power consumption and high-accuracy gas sensing characteristics.  相似文献   

18.
For 32/22 nm technology nodes and below, double patterning (DP) lithography has become the most promising interim solutions due to the delay in the deployment of next generation lithography (e.g., EUV). DP requires the partitioning of the layout patterns into two different masks, a procedure called layout decomposition. Layout decomposition is a key computational step that is necessary for double patterning technology. Existing works on layout decomposition are all single-threaded, which is not scalable in runtime and/or memory for large industrial layouts. This paper presents the first window-based parallel layout decomposition methods for improving both runtime and memory consumption. Experimental results are promising and show the presented parallel layout decomposition methods obtain upto 21× speedup in runtime and upto 7.5×reduction in peak memory consumption with acceptable solution quality.  相似文献   

19.
20.
    
Hierarchically ordered, monolithic surface reliefs have attracted a great deal of interest due to their applications in advanced photonics and interface sciences. While many impressive achievements in fabrication of such surface reliefs have been made over the last decade, all established methods are still restricted by a number of factors, such as limited control of structural features, inherently induced structural defects, impractically low throughput, and technical barriers caused by mechanical contact. Herein, a deterministic and scalable fabrication of hierarchically ordered, monolithic surface reliefs by holographic photofluidization of azopolymer line arrays is demonstrated. In particular, it is shown that the structural features of monolithic surface reliefs including shapes and modulation heights can be deterministically tunable by adjusting the polarization and irradiation time of the holographic interference pattern. Moreover, by a direct visualization of azopolymeric flow according to the light polarization, a long‐standing question about the origin of surface‐relief‐grating formation on azopolymer film is addressed in terms of polymeric flows. Finally, as proof of concept for the practical application of the obtained hierarchical surface reliefs, dependence of wetting properties on modulating height is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号