首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The doping of semiconductors plays a critical role in improving the performance of modern electronic devices by precisely controlling the charge carrier density. However, the absence of a stable doping method for p‐type oxide semiconductors has severely restricted the development of metal oxide‐based transparent p–n junctions and complementary circuits. Here, an efficient and stable doping process for p‐type oxide semiconductors by using molecule charge transfer doping with tetrafluoro‐tetracyanoquinodimethane (F4TCNQ) is reported. The selections of a suitable dopant and geometry play a crucial role in the charge‐transfer doping effect. The insertion of a F4TCNQ thin dopant film (2–7 nm) between a Au source‐drain electrode and solution‐processed p‐type copper oxide (CuxO) film in bottom‐gate top‐contact thin‐film transistors (TFTs) provides a mobility enhancement of over 20‐fold with the desired threshold voltage adjustment. By combining doped p‐type CuxO and n‐type indium gallium zinc oxide TFTs, a solution‐processed transparent complementary metal‐oxide semiconductor inverter is demonstrated with a high gain voltage of 50. This novel p‐doping method is expected to accelerate the development of high‐performance and reliable p‐channel oxide transistors and has the potential for widespread applications.  相似文献   

2.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

3.
A low contact resistance achieved on top‐gated organic field‐effect transistors by using coplanar and pseudo‐staggered device architectures, as well as the introduction of a dopant layer, is reported. The top‐gated structure effectively minimizes the access resistance from the contact to the channel region and the charge‐injection barrier is suppressed by doping of iron(III)trichloride at the metal/organic semiconductor interface. Compared with conventional bottom‐gated staggered devices, a remarkably low contact resistance of 0.1–0.2 kΩ cm is extracted from the top‐gated devices by the modified transfer line method. The top‐gated devices using thienoacene compound as a semiconductor exhibit a high average field‐effect mobility of 5.5–5.7 cm2 V?1 s?1 and an acceptable subthreshold swing of 0.23–0.24 V dec?1 without degradation in the on/off ratio of ≈109. Based on these experimental achievements, an optimal device structure for a high‐performance organic transistor is proposed.  相似文献   

4.
A typical human being carries billions of silicon‐based field‐effect transistors in his/her pockets. What makes these transistors work is Fermi level control, both by doping and field effect. Organic semiconductors are the core of a novel flexible electronics age, but the key effect of doping is still little understood. Here, precise handling is demonstrated for molar doping ratios as low as 10?5 in p‐ and n‐doped organic thin‐films by vacuum co‐sublimation, allowing comprehensive studying of the Fermi level control over the whole electronic gap of an organic semiconductor. In particular, dopant saturation and reserve regimes are observed for the first time in organic semiconductors. These results will allow for completely new design rules of organic transistors with improved long term stability and precise parameter control.  相似文献   

5.
Switching and control of efficient red, green, and blue active matrix organic light‐emitting devices (AMOLEDs) by printed organic thin‐film electrochemical transistors (OETs) are demonstrated. These all‐organic pixels are characterized by high luminance at low operating voltages and by extremely small transistor dimensions with respect to the OLED active area. A maximum brightness of ≈900 cd m?2 is achieved at diode supply voltages near 4 V and pixel selector (gate) voltages below 1 V. The ratio of OLED to OET area is greater than 100:1 and the pixels may be switched at rates up to 100 Hz. Essential to this demonstration are the use of a high capacitance electrolyte as the gate dielectric layer in the OETs, which affords extremely large transistor transconductances, and novel graded emissive layer (G‐EML) OLED architectures that exhibit low turn‐on voltages and high luminescence efficiency. Collectively, these results suggest that printed OETs, combined with efficient, low voltage OLEDs, could be employed in the fabrication of flexible full‐color AMOLED displays.  相似文献   

6.
Low‐voltage, hysteresis‐free, flexible thin‐film‐type electronic systems based on networks of single‐walled carbon nanotubes and bilayer organic–inorganic nanodielectrics are detailed in work by Rogers and co‐workers reported on p. 2355. The cover image shows a schematic array of such thin‐film transistors (TFTs) on a plastic substrate. The structure of the bilayer nanodielectric, which consists of a film of HfO2 formed by atomic layer deposition and an ultrathin layer of epoxy formed by spin‐casting, is also illustrated schematically. High‐capacitance bilayer dielectrics based on atomic‐layer‐deposited HfO2 and spin‐cast epoxy are used with networks of single‐walled carbon nanotubes (SWNTs) to enable low‐voltage, hysteresis‐free, and high‐performance thin‐film transistors (TFTs) on silicon and flexible plastic substrates. These HfO2–epoxy dielectrics exhibit excellent properties including mechanical flexibility, large capacitance (up to ca. 330 nF cm–2), and low leakage current (ca. 10–8 A cm–2); their low‐temperature (ca. 150 °C) deposition makes them compatible with a range of plastic substrates. Analysis and measurements of these dielectrics as gate insulators in SWNT TFTs illustrate several attractive characteristics for this application. Their compatibility with polymers used for charge‐transfer doping of SWNTs is also demonstrated through the fabrication of n‐channel SWNT TFTs, low‐voltage p–n diodes, and complementary logic gates.  相似文献   

7.
Deposition of metallic electrodes on a semiconductor medium is an indispensable factor in governing carrier injection, and a metal/semiconductor contact that can be formed via solution process is highly desired in printed electronics. However, fine‐patterning the solution processes of metallic electrodes without damaging the excellent electronic properties of organic semiconductors (OSCs) is still a challenge. In this work, electroless plating, a metal coating technique that involves auto‐catalytic reaction in an aqueous solution, is used to fabricate top‐contact organic thin‐film transistors (OTFTs). An electroless‐plated gold pattern with a spatial resolution of 10 micrometers is transferred and laminated on a monolayer of OSCs to serve as a hole‐injection electrode. The fabricated OTFTs exhibit reasonably high field‐effect mobility of up to 13 cm2 V?1 s?1 and decent contact resistance as low as 120 Ω · cm, which implies that an ideal metal/semiconductor contact can be realized. This electroless plating technique can provide possibilities for practical mass production of organic integrated circuits because it is in principle cost‐effective, capable of covering large areas, high‐vacuum free, and environmentally friendly.  相似文献   

8.
A series of new organic semiconductors for organic thin‐film transistors using dithieno[3,2‐b:2′,3′‐d]thiophene as the core have been synthesized. In work reported by Liu, Zhu, and co‐workers on p. 426, the phenyl‐substituted compound exhibited a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. Weekly shelf‐life tests of the transistors based on the bis(diphenyl)‐substituted thiophene under ambient conditions showed that the mobility was almost unchanged after more than two months, demonstrating potential for applications in future organic electronics. A series of new organic semiconductors for organic thin‐film transistors (OTFTs) using dithieno[3,2‐b:2′,3′‐d]thiophene as the core are synthesized. Their electronic and optical properties are investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), UV‐vis and photoluminescence spectroscopies, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The compounds exhibit an excellent field‐effect performance with a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. XRD patterns reveal these films, grown by vacuum deposition, to be highly crystalline, and SEM reveals well‐interconnected, microcrystalline domains in these films at room temperature. TGA and DSC demonstrate that the phenyl‐substituted compounds possess excellent thermal stability. Furthermore, weekly shelf‐life tests (under ambient conditions) of the OTFTs based on the phenyl‐substituted compounds show that the mobility for the bis(diphenyl)‐substituted thiophene was almost unchanged for more than two months, indicating a high environmental stability.  相似文献   

9.
By doping 2,7‐bis[4‐(N‐carbazole)phenylvinyl]‐9,9′‐spirobifluorene (spiro‐SBCz) into a wide energy gap 4,4′‐bis(9‐carbazole)‐2,2′‐biphenyl (CBP) host, we demonstrate an extremely low ASE threshold of Eth = (0.11 ± 0.05) μJ cm–2 (220 W cm–2) which is the lowest ASE threshold ever reported. In addition, we confirmed that the spiro‐SBCz thin film functions as an active light emitting layer in organic light‐emitting diode (OLED) and a field‐effect transistor (FET). In particular, we succeeded to obtain linear electroluminescence in the FET structure which will be useful for future organic laser diodes.  相似文献   

10.
Poly(4,8‐didodecyl‐2,6‐bis‐(3‐methylthiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene) self‐assembled on appropriate substrates from solution and formed highly structured thin films at low temperatures. As an as‐prepared thin‐film semiconductor without thermal annealing, it exhibited excellent field‐effect transistor properties with mobility of ~ 0.15 cm2 V–1 s–1 in thin‐film transistors.  相似文献   

11.
High‐performance, air‐stable, p‐channel WSe2 top‐gate field‐effect transistors (FETs) using a bilayer gate dielectric composed of high‐ and low‐k dielectrics are reported. Using only a high‐k Al2O3 as the top‐gate dielectric generally degrades the electrical properties of p‐channel WSe2, therefore, a thin fluoropolymer (Cytop) as a buffer layer to protect the 2D channel from high‐k oxide forming is deposited. As a result, a top‐gate‐patterned 2D WSe2 FET is realized. The top‐gate p‐channel WSe2 FET demonstrates a high hole mobility of 100 cm2­ V?1 s?1 and a ION/IOFF ratio > 107 at low gate voltages (VGS ca. ?4 V) and a drain voltage (VDS) of ?1 V on a glass substrate. Furthermore, the top‐gate FET shows a very good stability in ambient air with a relative humidity of 45% for 7 days after device fabrication. Our approach of creating a high‐k oxide/low‐k organic bilayer dielectric is advantageous over single‐layer high‐k dielectrics for top‐gate p‐channel WSe2 FETs, which will lead the way toward future electronic nanodevices and their integration.  相似文献   

12.
Carrier transport characteristics in organic field‐effect transistors were compared for vapor‐deposited thin films and epitaxially grown needle crystals of biphenyl‐capped thiophene oligomers with different lengths of the thiophene units. The hole mobility of the thin films deposited on Si/SiO2 substrate was improved up to 0.17 cm2 V–1 s–1 by formation of platelet crystallites with a domain size of a few micrometer. The hole transport in the epitaxial needle crystals grown on the KCl surface depended upon the molecular orientation with respect to the channel direction. The orientation of the needle axis bridging over the source–drain electrodes increased the mobility since π‐electronic interaction through the parallel stack of the linear molecules enhanced the carrier transport along the needle. The deposition condition and electronic energy levels of the oligomers, depending on the length of the thiophene units, also affected their characteristics.  相似文献   

13.
By changing the packing motif of the conjugated cores and the thin‐film microstructures, unipolar organic semiconductors may be converted into ambipolar materials. A combined experimental and theoretical investigation is conducted on the thin‐film organic field‐effect transistors (OFETs) of three organic semiconductors that have the same conjugated core structure of s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione but with different n‐alkyl groups. The optical and electrochemical measurements suggest that the three organic semiconductors have very similar energy levels; however, their OFETs exhibit dramatically different transport characteristics. Transistors based on compound 1a or 1c show ambipolar transport properties, while those based on compound 1b show p‐type unipolar behavior. Specifically, compound 1c is characterized as a good ambipolar semiconductor with the highest electron mobility of 0.22 cm2 V?1 s?1 and the highest hole mobility of 0.03 cm2 V?1 s?1. Complementary metal oxide semiconductor (CMOS) inverters incorporated with compound 1c show sharp inversions with high gains above 50. Theoretical investigations reveal that the drastic difference in the transport properties of the three materials is due to the difference in their molecular packing and film microstructures.  相似文献   

14.
We have fabricated organic field‐effect transistors based on thin films of 2,7‐carbazole oligomeric semiconductors 1,4‐bis(vinylene‐(N‐hexyl‐2‐carbazole))phenylene (CPC), 1,4‐bis(vinylene‐(N′‐methyl‐7′‐hexyl‐2′‐carbazole))benzene (RCPCR), N‐hexyl‐2,7‐bis(vinylene‐(N‐hexyl‐2‐carbazole))carbazole (CCC), and N‐methyl‐2,7‐bis(vinylene‐(7‐hexyl‐N‐methyl‐2‐carbazole))carbazole (RCCCR). The organic semiconductors are deposited by thermal evaporation on bare and chemically modified silicon dioxide surfaces (SiO2/Si) held at different temperatures varying from 25 to 200 °C during deposition. The resulting thin films have been characterized using UV‐vis and Fourier‐transform infrared spectroscopies, scanning electron microscopy, and X‐ray diffraction, and the observed top‐contact transistor performances have been correlated with thin‐film properties. We found that these new π‐conjugated oligomers can form highly ordered structures and reach high hole mobilities. Devices using CPC as the active semiconductor have exhibited mobilities as high as 0.3 cm2 V–1 s–1 with on/off current ratios of up to 107. These features make CPC and 2,7‐carbazolenevinylene‐based oligomers attractive candidates for device applications.  相似文献   

15.
Solution‐processed small‐molecule bulk heterojunction (BHJ) ambipolar organic thin‐film transistors are fabricated based on a combination of [2‐phenylbenzo[d,d']thieno[3,2‐b;4,5‐b']dithiophene (P‐BTDT) : 2‐(4‐n‐octylphenyl)benzo[d,d ']thieno[3,2‐b;4,5‐b']dithiophene (OP‐BTDT)] and C60. Treating high electrical performance vacuum‐deposited P‐BTDT organic semiconductors with a newly developed solution‐processed organic semiconductor material, OP‐BTDT, in an optimized ratio yields a solution‐processed p‐channel organic semiconductor blend with carrier mobility as high as 0.65 cm2 V?1 s?1. An optimized blending of P‐BTDT:OP‐BTDT with the n‐channel semiconductor, C60, results in a BHJ ambipolar transistor with balanced carrier mobilities for holes and electrons of 0.03 and 0.02 cm2 V?1 s?1, respectively. Furthermore, a complementary‐like inverter composed of two ambipolar thin‐film transistors is demonstrated, which achieves a gain of 115.  相似文献   

16.
An upscalable, self‐aligned patterning technique for manufacturing high‐ performance, flexible organic thin‐film transistors is presented. The structures are self‐aligned using a single‐step, multi‐level hot embossing process. In combination with defect‐free anodized aluminum oxide as a gate dielectric, transistors on foil with channel lengths down to 5 μm are realized with high reproducibility. Resulting on‐off ratios of 4 × 106 and mobilities as high as 0.5 cm2 V?1 s?1 are achieved, indicating a stable process with potential to large‐area production with even much smaller structures.  相似文献   

17.
A series of new organic semiconductors for organic thin‐film transistors (OTFTs) using dithieno[3,2‐b:2′,3′‐d]thiophene as the core are synthesized. Their electronic and optical properties are investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), UV‐vis and photoluminescence spectroscopies, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The compounds exhibit an excellent field‐effect performance with a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. XRD patterns reveal these films, grown by vacuum deposition, to be highly crystalline, and SEM reveals well‐interconnected, microcrystalline domains in these films at room temperature. TGA and DSC demonstrate that the phenyl‐substituted compounds possess excellent thermal stability. Furthermore, weekly shelf‐life tests (under ambient conditions) of the OTFTs based on the phenyl‐substituted compounds show that the mobility for the bis(diphenyl)‐substituted thiophene was almost unchanged for more than two months, indicating a high environmental stability.  相似文献   

18.
Here, a highly crystalline and self‐assembled 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pentacene) thin films formed by simple spin‐coating for the fabrication of high‐performance solution‐processed organic field‐effect transistors (OFETs) are reported. Rather than using semiconducting organic small‐molecule–insulating polymer blends for an active layer of an organic transistor, TIPS‐Pentacene organic semiconductor is separately self‐assembled on partially crosslinked poly‐4‐vinylphenol:poly(melamine‐co‐formaldehyde) (PVP:PMF) gate dielectric, which results in a vertically segregated semiconductor‐dielectric film with millimeter‐sized spherulite‐crystalline morphology of TIPS‐Pentacene. The structural and electrical properties of TIPS‐Pentacene/PVP:PMF films have been studied using a combination of polarized optical microscopy, atomic force microscopy, 2D‐grazing incidence wide‐angle X‐ray scattering, and secondary ion mass spectrometry. It is finally demonstrated a high‐performance OFETs with a maximum hole mobility of 3.40 cm2 V?1 s?1 which is, to the best of our knowledge, one of the highest mobility values for TIPS‐Pentacene OFETs fabricated using a conventional solution process. It is expected that this new deposition method would be applicable to other small molecular semiconductor–curable polymer gate dielectric systems for high‐performance organic electronic applications.  相似文献   

19.
The energetics of La‐doping in BaTiO3 are reported for both (electronic) donor‐doping with the creation of Ti3+ cations and ionic doping with the creation of Ti vacancies. The experiments (for samples prepared in air) and simulations demonstrate that ionic doping is the preferred mechanism for all concentrations of La‐doping. The apparent disagreement with electrical conduction of these ionic doped samples is explained by subsequent oxygen‐loss, which leads to the creation of Ti3+ cations. Simulations show that oxygen‐loss is much more favorable in the ionic‐doped system than undoped BaTiO3 due to the unique local structure created around the defect site. These findings resolve the so‐called “donor‐doping” anomaly in BaTiO3 and explain the source of semiconductivity in positive temperature coefficient of resistance (PTCR) BaTiO3 thermistors.  相似文献   

20.
Additive patterning of transparent conducting metal oxides at low temperatures is a critical step in realizing low‐cost transparent electronics for display technology and photovoltaics. In this work, inkjet‐printed metal oxide transistors based on pure aqueous chemistries are presented. These inks readily convert to functional thin films at lower processing temperatures (T ≤ 250 °C) relative to organic solvent‐based oxide inks, facilitating the fabrication of high‐performance transistors with both inkjet‐printed transparent electrodes of aluminum‐doped cadmium oxide (ACO) and semiconductor (InOx ). The intrinsic fluid properties of these water‐based solutions enable the printing of fine features with coffee‐ring free line profiles and smoother line edges than those formed from organic solvent‐based inks. The influence of low‐temperature annealing on the optical, electrical, and crystallographic properties of the ACO electrodes is investigated, as well as the role of aluminum doping in improving these properties. Finally, the all‐aqueous‐printed thin film transistors (TFTs) with inkjet‐patterned semiconductor (InOx ) and source/drain (ACO) layers are characterized, which show ideal low contact resistance (R c < 160 Ω cm) and competitive transistor performance (µ lin up to 19 cm2 V?1 s?1, Subthreshold Slope (SS) ≤150 mV dec?1) with only low‐temperature processing (T ≤ 250 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号