首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile and high‐yield approach to the preparation of few‐layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage‐1 H2SO4‐graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (<7 layers) with large lateral sizes (tens of microns) is more than 75% relative to the total amount of starting expanded graphite. A low degree of oxygen functionalization existing in the prepared FLG flakes enables them to disperse effectively, which contributes to the film‐forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24 500 S m?1). Three‐dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self‐sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g?1 at a current density of 0.5 A g?1, retaining 90% capacitance after 1000 cycles.  相似文献   

2.
Large-scale production of high-quality graphene is very critical for practical applications of graphene materials and devices. Exfoliation of graphite in an aqueous solution of surfactants is one of the most promising approaches to produce graphene. In this study, a novel anionic surfactant [sulfonated used engine oil (SUEO)], which was prepared from used engine oil, was employed to exfoliate the graphite nanoplatelets into graphene sheets in an aqueous solution under sonication to form a stable dispersion. The efficiency of SUEO for exfoliating and dispersing graphene was investigated and compared with that of traditional surfactants, such as sodium dodecyl sulfate, sodium dodecyl benzene sulfate, cetyl trimethyl ammonium bromide, and polyvinylpyrrolidone. Result showed that the graphene dispersion with excellent stability had a higher concentration (0.477 mg/mL) than others at 0.5 g/L optimal SUEO dosage in 4 h sonication time. The superior performance of SUEO can be attributed to its special molecular structures, whose hydrophobic moieties contain cycloalkanes/aromatics with different molecular weights and/or side chain –R with different lengths. Structural diversities are very helpful to the “jigsaw-puzzle” process on the graphene surface, where the total interfacial energy of the mixture system was minimized. Microscopic (SEM, TEM, and AFM) and spectroscopic (XRD, XPS, and Raman) measurements revealed that the dispersion consisted of few-layer graphene sheets with lower levels of defects or oxidation. This study presents a new class of dispersing agents for graphene that assists in the exfoliation process in water with high concentration and the stabilization of the graphene sheets against reaggregation.  相似文献   

3.
Graphene/polyaniline multilayered nanostructures (GPMNs) are prepared using a straightforward process through which graphite is physically exfoliated with quaternary polyaniline (PANI)‐glue. This is only accomplished by sonication of the graphite flakes in an organic solvent to form continuous films with PANI. During the sonication, the conductive PANI‐glue is spontaneously intercalated between the graphene sheet layers without deterioration of the sp2 hybridized bonding structure. The resultant free‐standing, flexible films are composed of a network of overlapping graphene sheets and are shown to have a long‐range structure. The effects of different PANI content ratios and different interfacial energies (depending on the dispersion solvent) on the morphology and properties of the resulting GPMN are examined. It is found that GPMNs dispersed in water have a maximum specific capacitance of 390 F g−1 in a three‐electrode configuration. Importantly, the unique structural design of GPMNs enables their use as electrode materials for the fabrication of flexible, solid‐state electrochemical capacitors, which show an enhanced performance compared to graphene‐only devices. They exhibit a high specific capacitance of 200 F g−1, a cycling stability with capacitance retention of 82% after 5000 charge/discharge cycles, and, moreover, superior flexibility.  相似文献   

4.
The static and dynamic wetting properties of a 3D graphene foam network are reported. The foam is synthesized using template‐directed chemical vapor deposition and contains pores several hundred micrometers in dimension while the walls of the foam comprise few‐layer graphene sheets that are coated with Teflon. Water contact angle measurements reveal that the foam is superhydrophobic with an advancing contact angle of ~163 degrees while the receding contact angle is ~143 degrees. The extremely water repellent nature of the foam is also confirmed when impacting water droplets are able to completely rebound from the surface. Such superhydrophobic graphene foams show potential in a variety of applications ranging from anti‐sticking and self‐cleaning to anti‐corrosion and low‐friction coatings.  相似文献   

5.
Graphene paper (GP) has attracted great attention as a heat dissipation material due to its unique thermal transfer property exceeding the limit of graphite. However, the relatively poor thermal transfer properties in the normal direction of GP restricts its wider applications in thermal management. In this work, a 3D bridged carbon nanoring (CNR)/graphene hybrid paper is constructed by the intercalation of polymer carbon source and metal catalyst particles, and the subsequent in situ growth of CNRs in the confined intergallery spaces between graphene sheets through thermal annealing. Further investigation demonstrates that the CNRs are covalently bonded to the graphene sheets and highly improve the thermal transport in the normal direction of the CNR/graphene hybrid paper. This full‐carbon architecture shows excellent heat dissipation ability and is much more efficient in removing hot spots than the reduced GP without CNR bridges. This highly thermally conductive CNR/graphene hybrid paper can be easily integrated into next generation commercial high‐power electronics and stretchable/foldable devices as high‐performance lateral heat spreader materials. This full‐carbon architecture also has a great potential in acting as electrodes in supercapacitors or hydrogen storage devices due to the high surface area.  相似文献   

6.
Efficient thermal energy harvesting using phase‐change materials (PCMs) has great potential for cost‐effective thermal management and energy storage applications. However, the low thermal conductivity of PCMs (KPCM) is a long‐standing bottleneck for high‐power‐density energy harvesting. Although PCM‐based nanocomposites with an enhanced thermal conductivity can address this issue, achieving a higher K (>10 W m?1 K?1) at filler loadings below 50 wt% remains challenging. A strategy for synthesizing highly thermally conductive phase‐change composites (PCCs) by compression‐induced construction of large aligned graphite sheets inside PCCs is demonstrated. The millimeter‐sized graphite sheet consists of lateral van‐der‐Waals‐bonded and oriented graphite nanoplatelets at the micro/nanoscale, which together with a thin PCM layer between the sheets synergistically enhance KPCM in the range of 4.4–35.0 W m?1 K?1 at graphite loadings below 40.0 wt%. The resulting PCCs also demonstrate homogeneity, no leakage, and superior phase change behavior, which can be easily engineered into devices for efficient thermal energy harvesting by coordinating the sheet orientation with the thermal transport direction. This method offers a promising route to high‐power‐density and low‐cost applications of PCMs in large‐scale thermal energy storage, thermal management of electronics, etc.  相似文献   

7.
We report the low-temperature synthesis of thin graphite sheets using a hybrid chemical vapor deposition (HCVD) system that combines plasma and thermal CVD (TCVD). Electron beam deposited Ni films were used as catalytic substrates, and methane was used as a carbon feedstock. The quartz tube was into two regions: core plasma region for efficient dissociation of methane and a TCVD region for thermal synthesis, respectively. After the syntheses at different TCVD temperatures from 550 °C to 900 °C, as-grown films were transferred to transparent polymeric substrates to apply as flexible conductive electrodes. Finally, it was found that thin graphite sheets consisting of ~ 15 graphene layers were synthesized at 600 °C using the HCVD system and could be applicable as transparent conductive films.  相似文献   

8.
Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces.  相似文献   

9.
A chemical route to graphene for device applications   总被引:5,自引:0,他引:5  
Gilje S  Han S  Wang M  Wang KL  Kaner RB 《Nano letters》2007,7(11):3394-3398
Oxidation of graphite produces graphite oxide, which is dispersible in water as individual platelets. After deposition onto Si/SiO2 substrates, chemical reduction produces graphene sheets. Electrical conductivity measurements indicate a 10000-fold increase in conductivity after chemical reduction to graphene. Tapping mode atomic force microscopy measurements show one to two layer graphene steps. Electrodes patterned onto a reduced graphite oxide film demonstrate a field effect response when the gate voltage is varied from +15 to -15 V. Temperature-dependent conductivity indicates that the graphene-like sheets exhibit semiconducting behavior.  相似文献   

10.
In conventional foams, electrical properties often play a secondary role. However, this scenario becomes different for 3D graphene foams (GrFs). In fact, one of the motivations for synthesizing 3D GrFs is to inherit the remarkable electrical properties of individual graphene sheets. Despite immense experimental efforts to study and improve the electrical properties of 3D GrFs, lack of theoretical studies and understanding limits further progress. The causes to this embarrassing situation are identified as the multiple freedoms introduced by graphene sheets and multiscale nature of this problem. In this article, combined with transport modeling and coarse‐grained molecular dynamic (MD) simulations, a theoretical framework is established to systematically study the electrical conducting properties of 3D GrFs with or without deformation. In particular, through large‐scale and massive calculations, a general relation between contact area and conductance for two van der Waals bonded graphene sheets is demonstrated, in terms of which the conductivity maximum phenomenon in GrFs is first theoretically proposed and its competition mechanism is explained. Moreover, the theoretical prediction is consistent with previous experimental observations.  相似文献   

11.
Graphene has attracted much attention as a new nano-carbon for its unique structure and properties. However, production and dispersion of unfunctionalized graphene are still big challenges. Herein, we demonstrate a simple method for preparation and dispersion of such graphene with low cost and non toxicum. This approach is achieved by exfoliating graphite in an ethanol/water mixture and forming stable dispersion of mono- and few-layer graphenes. The ratio of ethanol/water in the mixture is found to be crucial to both the exfoliation and dispersion processes. Exfoliation in pure water or pure ethanol produces no graphene. This method avoids the conventional use of harsh oxidants and surfactants; therefore, the graphitic structure is well maintained without destruction. Benefiting from the use of ethanol and water, it can be easy to prepare transparent and conductive graphene films by vacuum filtering or spray method, and does not need special post-treatment to remove the impurity, which could be beneficial for potential applications in electronic, optic and energy areas.  相似文献   

12.
The graphene with 3D porous network structure is directly laser‐induced on polyimide sheets at room temperature in ambient environment by an inexpensive and one‐step method, then transferred to silicon rubber substrate to obtain highly stretchable, transparent, and flexible electrode of the all‐solid‐state planar microsupercapacitors. The electrochemical capacitance properties of the graphene electrodes are further enhanced by nitrogen doping and with conductive poly(3,4‐ethylenedioxythiophene) coating. With excellent flexibility, stretchability, and capacitance properties, the planar microsupercapacitors present a great potential in fashionable and comfortable designs for wearable electronics.  相似文献   

13.
The fine control of graphene doping levels over a wide energy range remains a challenging issue for the electronic applications of graphene. Here, the controllable doping of chemical vapor deposited graphene, which provides a wide range of energy levels (shifts up to ± 0.5 eV), is demonstrated through physical contact with chemically versatile graphene oxide (GO) sheets, a 2D dopant that can be solution‐processed. GO sheets are a p‐type dopant due to their abundance of electron‐withdrawing functional groups. To expand the energy window of GO‐doped graphene, the GO surface is chemically modified with electron‐donating ethylene diamine molecules. The amine‐functionalized GO sheets exhibit strong n‐type doping behaviors. In addition, the particular physicochemical characteristics of the GO sheets, namely their sheet sizes, number of layers, and degree of oxidation and amine functionality, are systematically varied to finely tune their energy levels. Finally, the tailor‐made GO sheet dopants are applied into graphene‐based electronic devices, which are found to exhibit improved device performances. These results demonstrate the potential of GO sheet dopants in many graphene‐based electronics applications.  相似文献   

14.

Electrothermal materials can easily and controllably convert electric energy into heat energy, and are widely used in many electrothermal fields. In this paper, a series of conductive pastes were simply prepared by ball milling, and their rheological and electrothermal properties were studied. Phenolic resin was used as curing agent of epoxy resin and rheological modifier, which could make the paste have very good printing applicability. Ultrafine carbon(UC) powder has excellent dispersion effect. Sheet carbon materials such as graphite powder(GP), graphite nanosheet(GS) and graphene(GE) would improve the performance of paste using only UC as conductive filler. It was proved that GE with the smallest thickness has the most obvious lifting effect. UC was gathered around the graphene sheet, as a bridge between graphene sheets. GE could also be connected with each other to build a more effective and denser conductive path. The electrothermal film could reach 199°C under 30 V voltage, increasing by 254.7% compared with the electrothermal film with only UC as conductive filler. The electrothermal film had a short response time, good recyclability and excellent flexibility. The electrothermal film also had certain electromagnetic shielding efficiency. The electromagnetic shielding efficiency SE could reach about 20 dB at 30–1500 MHz, and the ratio of field strength before and after attenuation SE% could reach 97%?+?. This electrothermal film has simple preparation process, good printing applicability, controllable film resistance, excellent flexibility, fast response speed and good recyclability. It is suitable for large-scale preparation and has broad application prospects in many scenarios.

  相似文献   

15.
Multilayer super-short carbon nanotubes (SSCNTs) could be prepared by tailoring raw multiwalled carbon nanotubes (MWCNTs) with mechanical-stirring and ultrasonic oxidation-cut method. The SSCNTs/polyaniline/reduced graphene oxide (SSCNTs/PANI/RGO) ternary hybrid composite was fabricated by reducing SSCNTs/PANI/GO precursor prepared by self-assembly from the complex dispersion of graphene oxide (GO) and the as-prepared SSCNTs/PANI nanocables, followed by redoping and reoxidation of the reduced PANI to restore the conducting structure of PANI in the ternary composite. The microscope images indicated that SSCNTs/PANI nanocables could uniformly distribute in the conductive network of graphene sheets and prevent the agglomeration of graphene. Such the hierarchical structure perfectly facilitates the contact between PANI for faradaic energy storage and electrolyte ions, and efficiently utilizes the double-layer capacitance of SSCNTs and graphene sheets at the electrode–electrolyte interfaces. The maximum specific capacitance of the SSCNTs/PANI/RGO composite achieved 845 F g?1, which was much higher than that of pure PANI and SSCNTs/PANI nanocables. Moreover, the ternary composite also showed the good cycling stability, retaining about 96% of its initial capacitance after 1000 cycles because of the synergistic effect and conductive network of SSCNTs/PANI nanocables and graphene sheets. Therefore, the combined effects between SSCNTs/PANI nanocables and graphene sheets taking advantage of both charging and faradaic processes could readily explain the excellent electrochemical performance for supercapacitors.  相似文献   

16.
The development of fully foldable energy storage devices is a major science and engineering challenge, but one that must be overcome if next‐generation foldable or wearable electronic devices are to be realized. To overcome this challenge, it is necessary to develop new electrically conductive materials that exhibit superflexibility and can be folded or crumpled without plastic deformation or damage. Herein, a graphene film with engineered microvoids is prepared by reduction (under confinement) of its precursor graphene oxide film. The resultant porous graphene film can be single folded, double folded, and even crumpled, but springs back to its original shape without yielding or plastic deformation akin to an elastomeric scaffold after the applied stress is removed. Even after thermal annealing at ≈1300 °C, the folding performance of the porous graphene film is not compromised and the thermally annealed film exhibits complete foldability even in liquid nitrogen. A solid‐state foldable supercapacitor is demonstrated with the porous graphene film as the device electrode. The capacitance performance is nearly identical after 2000 cycles of single‐folding followed by another 2000 cycles of double folding.  相似文献   

17.
The demand for a highly sensitive and stable DNA biosensor that can be used for implantable or on‐time monitoring is constantly increasing. In this work, for the first time graphene oxide (GO) sheets are synthesized in situ at the surface of graphite fibers to yield scaly GO/graphite fiber hybrid electrodes. The partially peeled GO sheets, directly connected with the graphite fibers, not only provide a large number of binding sites for single‐stranded DNA, but also favor high electron transfer rates from GO to the graphite fibers. Cyclic voltammetry (CV) confirms that the scaly GO/graphite fiber hybrid electrode has excellent electrochemical activity. As a working electrode in an electrochemical impedance DNA biosensor, the fiber hybrid electrode exhibits high selectivity, sensitivity, and stability. Due to its simplicity, low cost, high stability, small size, and unique microfiber morphology, the scaly GO/graphite fiber hybrid electrode is an excellent candidate for an implantable biosensor. The method developed here could have a profound impact on the design of GO‐based biosensors for DNA detection.  相似文献   

18.
Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO(2) as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene-PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.  相似文献   

19.
Processable aqueous dispersions of graphene nanosheets   总被引:20,自引:0,他引:20  
Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.  相似文献   

20.
Chen Z  Ren W  Gao L  Liu B  Pei S  Cheng HM 《Nature materials》2011,10(6):424-428
Integration of individual two-dimensional graphene sheets into macroscopic structures is essential for the application of graphene. A series of graphene-based composites and macroscopic structures have been recently fabricated using chemically derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically derived graphene sheets. Here we report the direct synthesis of three-dimensional foam-like graphene macrostructures, which we call graphene foams (GFs), by template-directed chemical vapour deposition. A GF consists of an interconnected flexible network of graphene as the fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as ~0.5 wt%, GF/poly(dimethyl siloxane) composites show a very high electrical conductivity of ~10 S cm(-1), which is ~6 orders of magnitude higher than chemically derived graphene-based composites. Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号