首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
自旋极化电子的高效注入、自旋霍尔效应和自旋流的产生与探测都是目前自旋电子学中热门研究专题,世界一些著名学术刊物屡见报道。对这些重要内容的理论和实验的最新研究成果进行了介绍。通过自旋极化电子高效注入方法和材料的研究,人们期望研制出新一代自旋电子器件,进而实现应用电子自旋传输、记录和存储信息的目标。近期实验给出,自旋极化电子从铁磁金属注入半导体和金属都获得较高的极化率。各种注入方法中,自旋流直接注入法目前备受关注,因为自旋霍尔效应为自旋流的产生与探测提供了新的途径,即自旋霍尔效应可以产生自旋流,但因无霍尔电压故不容易测量;而逆自旋霍尔效应又将自旋流转化为电流,使得难以测量的自旋流又可以直接用电学方法测量。  相似文献   

3.
Spin Seebeck effect (SSE) and related spin caloritronics have attracted great interest recently. However, the definition of the SSE coefficient remains to be established, let alone a clean experiment to measure the SSE coefficient in ferromagnetic metals. The concept through a model based on the semi‐classical Botlzmann transport equation has been clarified. The model includes the vital spin‐flip process, which is frequent in metals, and points out that the length scale of SSE is much larger than the spin diffusion length. The model reveals how the spin‐flip process influences the transport equations and provides the simple relationship between the different spin‐flip relaxation times for spin‐up and ‐down electrons, which is very useful to understand the spin transport properties. This understanding allows to redefine the expression of the spin Seebeck coefficient.  相似文献   

4.
自旋电子学和自旋电子器件   总被引:1,自引:1,他引:1  
自旋电子学是近年来发展起来的微电子学和磁学的交叉学科,主要研究自旋极化电流的注入、控制和检测。本文介绍了自旋电子学和器件的研究进展,着重讨论了自旋注入和检测的问题,分析了自旋电子器件研究的核心问题和难点。自旋电子学的研究有着重要的理论意义,自旋器件在信息科学领域也具有十分广阔的应用前景。  相似文献   

5.
6.
自旋晶体管是指利用电子自旋自由度构建的在结构上类似于传统半导体晶体管的三端自旋器件。对基于自旋劈裂的磁双极型自旋晶体管、基于热电子输运的自旋晶体管和基于Rashba效应的自旋晶体管的最新研究动态进行了评述,并对其发展前景做了展望。  相似文献   

7.
自旋电子学是近年来发展迅速的一个研究领域,利用了传导电子自旋这一自由度的自旋电子器件以其提高数据处理速度、降低能量消耗、容易增加集成密度等优点正引起人们的空前关注.文中阐述了自旋的漂移-扩散方程,并对以Fe/GaAs为代表的铁磁性金属/半导体结构(FM/SC)进行了简单分析.如果选取参数适当,可以在Fe/GaAs结中获得较大的自旋注入效率.  相似文献   

8.
综述了自旋电子学的一些新进展,重点介绍了自旋极化的光学注入、弛豫机制和光学探测等方面的内容,并涉及到与自旋有关的自旋霍尔效应(SHE)和纯自旋流等物理效应.  相似文献   

9.
刘鹏 《中国集成电路》2008,17(12):66-69
自旋阀结构的发现为磁电子学以及磁传感器的研究揭开了新的一页。基于自旋阀结构的磁传感器由于具有灵敏度高、功耗小、高集成度等优点,因此在传感器工业中具有广泛的应用前景。本文介绍了基于自旋阀结构的磁传感器的研究方法。首先介绍了自旋阀结构及其特性,然后介绍了基于自旋阀结构的磁性薄膜的制备方法和结构优化,其次介绍了基于自旋阀薄膜的磁传感器芯片的制造工艺,最后介绍了基于惠斯通电桥结构的自旋阀磁传感器芯片。  相似文献   

10.
为了提高自旋转移扭矩随机存储器的性能,尤其是它的写速度,我们提出了几种三端自旋转移扭矩随机存储器的改进结构。利用微磁模拟对几种新结构单元的磁动态过程进行研究,发现改进的几种新结构单元中,性能最好的新结构比原始的方形的三端器件单元写速度快120%。这种优化的三端器件在保证三端器件可靠性的同时大大提高了速度。  相似文献   

11.
External manipulation of spin‐orbit torques (SOTs) promises not only energy‐efficient spin‐orbitronic devices but also versatile applications of spin‐based technologies in diverse fields. However, the external electric‐field control, widely used in semiconductor spintronics, is known to be ineffective in conventional metallic spin‐orbitronic devices due to the very short screening length. Here, an alternative approach to control the SOTs by using gases is shown. It is demonstrated that the spin‐torque generation efficiency of a Pd/Ni81Fe19 bilayer can be reversibly manipulated by the absorption and desorption of H2 gas, which appears concomitantly with the change of the electrical resistance. It is found that compared with the change of the Pd resistance induced by the H2 absorption, the change of the spin‐torque generation efficiency is almost an order of magnitude larger. This result provides a new method to externally manipulate the SOTs and paves a way for developing more sensitive hydrogen sensors based on the spin‐orbitronic technology.  相似文献   

12.
By applying nonequilibrium Green’s functions in combination with density-function theory, the spin-dependent transport properties of cross-linked carbon nanotube spintronic devices are investigated. Our calculations show that the perfect spin filtering effect with the almost 100% spin polarization, and the magnetoresistance effect with a magnetoresistance ratio larger than 104104% can be observed in the device. The occurrence of the perfect spin-filtering and magnetoresistance effects in the cross-linked carbon nanotube spintronic device provides the possibility for further improving the integration level of carbon nanotube networks. Moreover, the mechanisms for these interesting phenomena are suggested.  相似文献   

13.
To improve the performance of spin transfer torque random access memory(STT-RAM),especially writing speed,we propose three modified 3-terminal STT-RAM cells.A magnetic dynamic process in the new structures was investigated through micro-magnetic simulation.The best switching speed of the new structures is 120%faster than that of the rectangular 3-terminal device.The optimized 3-terminal device offers high speed while maintaining the high reliability of the 3-terminal structure.  相似文献   

14.
A combined Raman spectroscopy and magnetometry study of CoFe2O4–Cr2O3 nanocomposites demonstrates the presence of spin–phonon interactions and exchange bias at the interface between the ferrimagnetic CoFe2O4 and the antiferromagnetic and magnetoelectric Cr2O3 phases. The pinned layer of uncompensated spins at the surface of the chromium oxide nanocrystals provides a source of unidirectional anisotropy and changes the sign of the exchange bias when transitioning from a canted to a frustrated situation, that is, as increasing the percentage of CoFe2O4 or decreasing the percentage of Cr2O3 in the composites. This assessment of the distinctive interfaces attained in the final oxide heterostructures offers a prospective route for hybrid materials which uphold a magnetoelectric effect.  相似文献   

15.
Motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields, this work aims at magnonics manipulation by the magnetoelectric coupling effect. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3‐0.3PbTiO3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage‐induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin‐lattice coupling effect, i.e., varying exchange stiffness due to voltage‐induced anisotropic lattice changes, has been established to explain experiment results with good agreement. Additionally, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin‐lattice coupling effect provides a platform for realizing energy‐efficient, tunable magnonics devices.  相似文献   

16.
The spin current is significantly limited by the spin‐orbit interaction strength, material quality, and spin‐mixing conductance at material interfaces. Such limitations lead to spin current decay at the interfaces, which severely hinders potential applications in spin‐current‐generating thermoelectric devices. Thus, methodical studies on the enhancement of spin currents are indispensable. Herein, a novel approach for enhancing the spin current injected into a normal metal, Pt, using interface effects with a ferromagnetic insulator, yttrium iron garnet (YIG), is demonstrated. This is accomplished by inserting atomically thin monolayer (ML), tungsten diselenide (WSe2) between Pt and YIG layers. A comparative study of longitudinal spin Seebeck effect (LSSE) measurements is conducted. Two types of ML WSe2 (continuous and large‐area ML WSe2 and isolated ML WSe2 flakes) are used as intermediate layers on YIG film. Notably, the insertion of ML WSe2 between the Pt and YIG layers significantly enhances the thermopower, VLSSET by a factor of approximately 5.6 compared with that of the Pt/YIG reference sample. This enhancement in the measured LSSE voltages in the Pt/ML WSe2/YIG trilayer can be explained by the increased spin‐to‐charge conversion at the interface owing to the large spin‐orbit coupling and improved spin mixing conductance with the ML WSe2 intermediate layer.  相似文献   

17.
《Organic Electronics》2014,15(1):276-280
Planar organic spin valves were fabricated by evaporating organic semiconductor PTCDI-C13 onto pairs of patterned Ni80Fe20 magnetic nanowires separated by 120 nm. Control over the relative alignment of magnetisation in the nanowires was achieved by including a domain wall ‘nucleation pad’ at the end of one of the wires to ensure a large separation in magnetic switching fields. Switching behaviour was investigated by optical and X-ray magnetic imaging. Room temperature organic magnetoresistance of −0.35% was observed, which is large compared to that achieved in vertical spin valves with similar materials. We attribute the enhanced performance of the planar geometry to the deposition of the semiconductor on top of the metal, which improves the quality of metal–semiconductor interfaces compared to the metal-on-semiconductor interfaces in vertical spin valves.  相似文献   

18.
Despite their great promise for providing a pathway for very efficient and fast manipulation of magnetization, spin‐orbit torque (SOT) operations are currently energy inefficient due to a low damping‐like SOT efficiency per unit current bias, and/or the very high resistivity of the spin Hall materials. This work reports an advantageous spin Hall material, Pd1?xPtx, which combines a low resistivity with a giant spin Hall effect as evidenced with three independent SOT ferromagnetic detectors. The optimal Pd0.25Pt0.75 alloy has a giant internal spin Hall ratio of >0.60 (damping‐like SOT efficiency of ≈0.26 for all three ferromagnets) and a low resistivity of ≈57.5 µΩ cm at a 4 nm thickness. Moreover, it is found that the Dzyaloshinskii–Moriya interaction (DMI), the key ingredient for the manipulation of chiral spin arrangements (e.g., magnetic skyrmions and chiral domain walls), is considerably strong at the Pd1?xPtx/Fe0.6Co0.2B0.2 interface when compared to that at Ta/Fe0.6Co0.2B0.2 or W/Fe0.6Co0.2B0.2 interfaces and can be tuned by a factor of 5 through control of the interfacial spin‐orbital coupling via the heavy metal composition. This work establishes a very effective spin current generator that combines a notably high energy efficiency with a very strong and tunable DMI for advanced chiral spintronics and spin torque applications.  相似文献   

19.
磁电子学研究概述   总被引:1,自引:0,他引:1  
简要介绍了磁电子学的基本概念、研究对象和几种重要效应 ,以及基于这些效应的几种新型器件的工作原理 ,提出了磁电子学研究中的几个前瞻性课题 ,对磁电子学的未来发展方向作了评述和展望  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号