首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of low-cost and effective oxygen evolution reaction (OER) electrocatalysts to expedite the slow kinetics of water splitting is crucial for increasing the efficiency of energy conversion from electricity to hydrogen fuel. Herein, 3D bicontinuous nanoporous Co@CoO/RuO2 composites with tunable sizes and chemical compositions are fabricated by introducing vapor phase dealloying of cobalt-based alloys. The influence of physical parameters on the formation of nanoporous Co substrates with various feature ligament sizes is systematically investigated. The CoO/RuO2 shell is constructed by integrating a thin layer of RuO2 on the inner surface of nanoporous Co, where the CoO interlayer is formed by annealing oxidization. The composite catalyst delivers an ultralow overpotential of 198 mV at 10 mA cm−2, Tafel slope of 57.1 mV dec−1, and long-term stability of 50 h. The superior OER activity and fast reaction kinetics are attributed to charge transfer through the coupling of Co O Ru bonds at the interface and the excellent nanopore connectivity, while the durability originates from the highly stable CoO/RuO2 interface.  相似文献   

2.
A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal–air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO‐Co@N‐doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal–organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co–Nx and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn‐based and Co‐based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (≥700 °C), which is favorable for charge transfer. The optimized CoZn‐NC‐700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn‐NC‐700 also exhibits the prominent Zn–air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.  相似文献   

3.
Cathode design is indispensable for building Li‐O2 batteries with long cycle life. A composite of carbon‐wrapped Mo2C nanoparticles and carbon nanotubes is prepared on Ni foam by direct hydrolysis and carbonization of a gel composed of ammonium heptamolybdate tetrahydrate and hydroquinone resin. The Mo2C nanoparticles with well‐controlled particle size act as a highly active oxygen reduction reactions/oxygen evolution reactions (ORR/OER) catalyst. The carbon coating can prevent the aggregation of the Mo2C nanoparticles. The even distribution of Mo2C nanoparticles results in the homogenous formation of discharge products. The skeleton of porous carbon with carbon nanotubes protrudes from the composite, resulting in extra voids when applied as a cathode for Li‐O2 batteries. The batteries deliver a high discharge capacity of ≈10 400 mAh g?1 and a low average charge voltage of ≈4.0 V at 200 mA g?1. With a cutoff capacity of 1000 mAh g?1, the Li‐O2 batteries exhibit excellent charge–discharge cycling stability for over 300 cycles. The average potential polarization of discharge/charge gaps is only ≈0.9 V, demonstrating the high ORR and OER activities of these Mo2C nanoparticles. The excellent cycling stability and low potential polarization provide new insights into the design of highly reversible and efficient cathode materials for Li‐O2 batteries.  相似文献   

4.
Electrochemical water splitting is very attractive for green fuel energy production, but the development of active, stable, and earth‐abundant catalysts for the hydrogen evolution reaction (HER) remains a major challenge. Here, core–shell nanostructured architectures are used to design and fabricate efficient and stable HER catalysts from earth‐abundant components. Vertically oriented quasi‐2D core–shell MoO2/MoSe2 nanosheet arrays are grown onto insulating (SiO2/Si wafer) or conductive (carbon cloth) substrates. This core–shell nanostructure array architecture exhibits synergistic properties to create superior HER performance, where high density structural defects and disorders on the shell generated by a large crystalline mismatch of MoO2 and MoSe2 act as multiple active sites for HER, and the metallic MoO2 core facilitates charge transport for proton reduction while the vertical nanosheet arrays ensure fully exposed active sites toward electrolytes. As a HER catalyst, this electrode exhibits a low Tafel slope of 49.1 mV dec?1, a small onset potential of 63 mV, and an ultralow charge transfer resistance (Rct) of 16.6 Ω at an overpotential of 300 mV with a long cycling durability for up to 8 h. This work suggests that a quasi 2D core–shell nanostructure combined with a vertical array microstructure is a promising strategy for efficient water splitting electrocatalysts with scale‐up potential.  相似文献   

5.
Development of highly efficient and low‐cost multifunctional electrocatalysts for the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR), and the hydrogen evolution reaction is urgently required for energy storage and conversion applications, such as in Zn–air batteries and water splitting to replace very expansive noble metal catalysts. Here, the new core–shell NiFe@N‐graphite electrocatalysts with excellent electrocatalytic activity and stability toward OER and ORR are reported and the Ni0.5Fe0.5@N‐graphite electrocatalyst is applied as the air electrode in Zn–air batteries. The respective liquid Zn–air battery shows a large open‐circuit potential of 1.482 V and a small charge–discharge voltage gap of 0.12 V at 10 mA cm−2, together with excellent cycling stability even after 40 h at 20 mA cm−2. Interestingly, the all‐solid‐like Zn–air battery thus derived shows a highly desired mechanical flexibility, whereby little change is observed in the voltage when bent into different angles. Using the same Ni0.5Fe0.5@N‐graphite electrode, a self‐driven water‐splitting device, which is powered by two Zn–air batteries in‐series, is constructed. The present study opens a new opportunity for the rational design of metal@N‐graphite‐based catalysts of core–shell structures for electrochemical catalysts and renewable energy applications.  相似文献   

6.
Vanadium oxide is a promising pseudocapacitive electrode, but their capacitance, especially at high current densities, requires improvement for practical applications. Herein, a VOx@MoO3 composite electrode is constructed through a facile electrochemical method. Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy demonstrate a modification on the chemical environment and electronic structure of VOx upon the effective interaction with the thin layer of MoO3. A careful investigation of the electrochemical impedance spectroscopy data reveals much enhanced power capability of the composite electrode. More charge storage sites will also be created at/near the heterogeneous interface. Due to those synergistic effects, the VOx@MoO3 electrode shows excellent electrochemical performance. It provides a high capacitance of 1980 mF cm−2 at 2 mA cm−2. Even at the high current density of 100 mA cm−2, it still achieves 1166 mF cm−2 capacitance, which doubles the sum of single electrodes. The MoO3 layer also helps to prevent VOx structure deformation, and 94% capacitance retention over 10 000 cycles is obtained for the composite electrode. This work demonstrates an effective strategy to induce interactions between heterogeneous components and enhance the electrochemical performance, which can also be applied to other pseudocapacitive electrode candidates.  相似文献   

7.
Owing to the unique electronic properties, rare‐earth modulations in noble‐metal electrocatalysts emerge as a critical strategy for a broad range of renewable energy solutions such as water‐splitting and metal–air batteries. Beyond the typical doping strategy that suffers from synthesis difficulties and concentration limitations, the innovative introduction of rare‐earth is highly desired. Herein, a novel synthesis strategy is presented by introducing CeO2 support for the nickel–iron–chromium hydroxide (NFC) to boost the oxygen evolution reaction (OER) performance, which achieves an ultralow overpotential at 10 mA cm?2 of 230.8 mV, the Tafel slope of 32.7 mV dec?1, as well as the excellent durability in alkaline solution. Density functional theory calculations prove the established df electronic ladders, by the interaction between NFC and CeO2, evidently boosts the high‐speed electron transfer. Meanwhile, the stable valence state in CeO2 preserves the high electronic reactivity for OER. This work demonstrates a promising approach in fabricating a nonprecious OER electrocatalyst with the facilitation of rare‐earth oxides to reach both excellent activity and high stability.  相似文献   

8.
This work presents a design of sandwich MoO3/C hybrid nanostructure via calcination of the dodecylamine‐intercalated layered α‐MoO3, leading to the in situ production of the interlayered graphene layer. The sample with a high degree of graphitization of graphene layer and more interlayered void region exhibits the most outstanding energy storage performance. The obtained material is capable of delivering a high specific capacitance of 331 F g?1 at a current density of 1 A g?1 and retained 71% capacitance at 10 A g?1. In addition, nearly no discharge capacity decay between 1000 and 10 000 continuous charge–discharge cycles is observed at a high current density of 10 A g?1, indicating an excellent specific capacitance retention ability. The exceptional rate capability endows the electrode with a high energy density of 41.2 W h kg?1 and a high power density of 12.0 kW kg?1 simultaneously. The excellent performance is attributed to the sandwich hybrid nanostructure of MoO3/C with broad ion diffusion pathway, low charge‐transfer resistance, and robust structure at high current density for long‐time cycling. The present work provides an insight into the fabrication of novel electrode materials with both enhanced rate capability and cyclability for potential use in supercapacitor and other energy storage devices.  相似文献   

9.
Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal–organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.  相似文献   

10.
Li–air batteries, characteristic of superhigh theoretical specific energy density, cost‐efficiency, and environment‐friendly merits, have aroused ever‐increasing attention. Nevertheless, relatively low Coulomb efficiency, severe potential hysteresis, and poor rate capability, which mainly result from sluggish oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) kinetics, as well as pitiful cycle stability caused by parasitic reactions, extremely limit their practical applications. Manganese (Mn)‐based oxides and their composites can exhibit high ORR and OER activities, reduce charge/discharge overpotential, and improve the cycling stability when used as cathodic catalyst materials. Herein, energy storage mechanisms for Li–air batteries are summarized, followed by a systematic overview of the progress of manganese‐based oxides (MnO2 with different crystal structures, MnO, MnOOH, Mn2O3, Mn3O4, MnOx, perovskite‐type and spinel‐type manganese oxides, etc.) cathodic materials for Li–air batteries in the recent years. The focus lies on the effects of crystal structure, design strategy, chemical composition, and microscopic physical parameters on ORR and OER activities of various Mn‐based oxides, and even the overall performance of Li–air batteries. Finally, a prospect of the research for Mn‐based oxides cathodic catalysts in the future is made, and some new insights for more reasonable design of Mn‐based oxides electrocatalysts with higher catalytic efficiency are provided.  相似文献   

11.
Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes highly rely on the rational design and synthesis of high-performance electrocatalysts. Herein, comprehensive characterizations and density functional theory (DFT) calculations are combined to verify the important roles of the crystallinity and oxygen vacancy levels of Co(II) oxide (CoO) on ORR and OER activities. A facile and controllable vacuum-calcination strategy is utilized to convert Co(OH)2 into oxygen-defective amorphous-crystalline CoO (namely ODAC-CoO) nanosheets. With the carefully controlled crystallinity and oxygen vacancy levels, the optimal ODAC-CoO sample exhibits dramatically enhanced ORR and OER electrocatalytic activities compared with the pure crystalline CoO counterpart. The assembled liquid and quasi-solid-state Zn–air batteries with ODAC-CoO as cathode material achieve remarkable specific capacity, power density, and excellent cycling stability, outperforming the benchmark Pt/C + IrO2 catalysts. This study theoretically proposes and experimentally demonstrates that the simultaneous introduction of amorphous structures and oxygen vacancies could be an effective avenue towards high-performance electrocatalytic ORR and OER.  相似文献   

12.
Electrochemical water splitting is a common way to produce hydrogen gas, but the sluggish kinetics of the oxygen evolution reaction (OER) significantly limits the overall energy conversion efficiency of water splitting. In this work, a highly active and stable, meso–macro hierarchical porous Ni3S4 architecture, enriched in Ni3+ is designed as an advanced electrocatalyst for OER. The obtained Ni3S4 architectures exhibit a relatively low overpotential of 257 mV at 10 mA cm?2 and 300 mV at 50 mA cm?2. Additionally, this Ni3S4 catalyst has excellent long‐term stability (no degradation after 300 h at 50 mA cm?2). The outstanding OER performance is due to the high concentration of Ni3+ and the meso–macro hierarchical porous structure. The presence of Ni3+ enhances the chemisorption of OH?, which facilitates electron transfer to the surface during OER. The hierarchical porosity increases the number of exposed active sites, and facilitates mass transport. A water‐splitting electrolyzer using the prepared Ni3S4 as the anode catalyst and Pt/C as the cathode catalyst achieves a low cell voltage of 1.51 V at 10 mA cm?2. Therefore, this work provides a new strategy for the rational design of highly active OER electrocatalysts with high valence Ni3+ and hierarchical porous architectures.  相似文献   

13.
A novel synergistic TiO2‐MoO3 (TO‐MO) core–shell nanowire array anode has been fabricated via a facile hydrothermal method followed by a subsequent controllable electrodeposition process. The nano‐MoO3 shell provides large specific capacity as well as good electrical conductivity for fast charge transfer, while the highly electrochemically stable TiO2 nanowire core (negligible volume change during Li insertion/desertion) remedies the cycling instability of MoO3 shell and its array further provides a 3D scaffold for large amount electrodeposition of MoO3. In combination of the unique electrochemical attributes of nanostructure arrays, the optimized TO‐MO hybrid anode (mass ratio: ca. 1:1) simultaneously exhibits high gravimetric capacity (ca. 670 mAh g?1; approaching the hybrid's theoretical value), excellent cyclability (>200 cycles) and good rate capability (up to 2000 mA g?1). The areal capacity is also as high as 3.986 mAh cm?2, comparable to that of typical commercial LIBs. Furthermore, the hybrid anode was assembled for the first time with commercial LiCoO2 cathode into a Li ion full cell, which shows outstanding performance with maximum power density of 1086 W kgtotal ?1 (based on the total mass of the TO‐MO and LiCoO2) and excellent energy density (285 Wh kgtotal ?1) that is higher than many previously reported metal oxide anode‐based Li full cells.  相似文献   

14.
Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of ?0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm?2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm?2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment.  相似文献   

15.
When transition metal oxides are used in practical applications, such as organic electronics or heterogeneous catalysis, they often must be in contact with a metal. Metal contacts can affect an oxide's chemical and electronic properties within the first few nanometers of the contact, resulting in changes to an oxide's chemical reactivity, conductivity, and energy‐level alignment properties. These effects can alter an oxide's ability to perform its intended function. Thus, the choice of contacting metal becomes an important design consideration when tailoring the properties of transition‐metal oxide thin films or nanoparticles. Here, metal/metal‐oxide interfaces involving a widely used oxide in organic electronics, MoO3, are examined. It is demonstrated that metal contacts tend to reduce the Mo6+ cation to lower oxidation states and, consequently, alter MoO3’s valence electronic structure and work function when the oxide layer is very thin (less than 10 nm). MoO3 becomes semimetallic and has a lower work function near metal contacts. The observed behavior is attributed to two causes: 1) charge transfer from the metal Fermi level into MoO3’s low‐lying conduction band and 2) an oxidation‐reduction reaction between the metal and MoO3 that results in oxidation of the metal and reduction of MoO3. These results illustrate how interfaces are important to an oxide's ability to provide energy‐level alignment.  相似文献   

16.
Cobalt sulfide materials have attracted enormous interest as low‐cost alternatives to noble‐metal catalysts capable of catalyzing both oxygen reduction and oxygen evolution reactions. Although recent advances have been achieved in the development of various cobalt sulfide composites to expedite their oxygen reduction reaction properties, to improve their poor oxygen evolution reaction (OER) activity is still challenging, which significantly limits their utilization. Here, the synthesis of Fe3O4‐decorated Co9S8 nanoparticles in situ grown on a reduced graphene oxide surface (Fe3O4@Co9S8/rGO) and the use of it as a remarkably active and stable OER catalyst are first reported. Loading of Fe3O4 on cobalt sulfide induces the formation of pure phase Co9S8 and highly improves the catalytic activity for OER. The composite exhibits superior OER performance with a small overpotential of 0.34 V at the current density of 10 mA cm?2 and high stability. It is believed that the electron transfer trend from Fe species to Co9S8 promotes the breaking of the Co–O bond in the stable configuration (Co–O–O superoxo group), attributing to the excellent catalytic activity. This development offers a new and effective cobalt sulfide‐based oxygen evolution electrocatalysts to replace the expensive commercial catalysts such as RuO2 or IrO2.  相似文献   

17.
Making highly efficient catalysts for an overall ?water splitting reaction is vitally important to bring solar/electrical‐to‐hydrogen energy conversion processes into reality. Herein, the synthesis of ultrathin nanosheet‐based, hollow MoOx/Ni3S2 composite microsphere catalysts on nickel foam, using ammonium molybdate as a precursor and the triblock copolymer pluronic P123 as a structure‐directing agent is reported. It is also shown that the resulting materials can serve as bifunctional, non‐noble metal electrocatalysts with high activity and stability for the hydrogen evolution reaction (HER) as well as the oxygen evolution reaction (OER). Thanks to their unique structural features, the materials give an impressive water‐splitting current density of 10 mA cm?2 at ≈1.45 V with remarkable durability for >100 h when used as catalysts both at the cathode and the anode sides of an alkaline electrolyzer. This performance for an overall water splitting reaction is better than even those obtained with an electrolyzer consisting of noble metal‐based Pt/C and IrOx/C catalytic couple—the benchmark catalysts for HER and OER, respectively.  相似文献   

18.
Covalent organic frameworks (COFs) exhibit great potential in the application of functional electronic devices. However, there has been no report of the precise fabrication of 3D all-in-one hollow micro/nanostructures based on COFs. Here, for the first time, all-in-one hollow dioxin-based COF-316 microflowers are synthesized measuring 5–7 µm and with interconnected hollow petals through a self-template strategy. The growth mechanism involves the collaborative process of self-assembly of nanoparticles, inside-out Ostwald ripening, and epitaxial growth. Due to the intrinsic porosity and interconnected hollow structure, COF-316 can uniformly composite with polypyrrole (PPy) through the “interior” and “exterior” functionalization, in which the hydrogen bond interaction enhances the charge transfer efficiency and structural stability in the charge/discharge process. The COF-316@PPy flexible transparent supercapacitors exhibit an areal specific capacitance (CA) of 783.6 µF cm–2 at 3 µA cm–2 and long-term cycling stability. This work will boost research on the valuable design concepts of 3D hollow COF materials for energy storage devices.  相似文献   

19.
The control of interfacial charge transfer is central to the design of photovoltaic devices. This charge transfer is strongly dependent upon the local chemical environment at each interface. In this paper we report a methodology for the fabrication of a novel nanostructured multicomponent film, employing a dual‐function supramolecular organic semiconductor to allow molecular‐level control of the local chemical composition at a nanostructured inorganic/organic semiconductor heterojunction. The multicomponent film comprises a lithium ion doped dual‐functional hole‐transporting material (Li+–DFHTM), sandwiched between a dye‐sensitized nanocrystalline TiO2 film and a mono‐functional organic hole‐transporting material (MFHTM). The DFHTM consists of a conjugated organic semiconductor with ion supporting side chains, designed to allow both electronic and ionic charge transport properties. The Li+–DFHTM layers provide a new and versatile way to control the interface electrostatics, and consequently the charge transfer, at a nanostructured dye‐sensitized inorganic/organic semiconductor heterojunction.  相似文献   

20.
Replacement of precious metals with earth‐abundant electrocatalysts for oxygen evolution reaction (OER) holds great promise for realizing practically viable water‐splitting systems. It still remains a great challenge to develop low‐cost, highly efficient, and durable OER catalysts. Here, the composition and morphology of Ni–Co bimetal phosphide nanocages are engineered for a highly efficient and durable OER electrocatalyst. The nanocage structure enlarges the effective specific area and facilitates the contact between catalyst and electrolyte. The as‐prepared Ni–Co bimetal phosphide nanocages show superior OER performance compared with Ni2P and CoP nanocages. By controlling the molar ratio of Ni/Co atoms in Ni–Co bimetal hydroxides, the Ni0.6Co1.4P nanocages derived from Ni0.6Co1.4(OH)2 nanocages exhibit remarkable OER catalytic activity (η = 300 mV at 10 mA cm?2) and long‐term stability (10 h for continuous test). The density‐functional‐theory calculations suggest that the appropriate Co doping concentration increases density of states at the Fermi level and makes the d‐states more close to Fermi level, giving rise to high charge carrier density and low intermedia adsorption energy than those of Ni2P and CoP. This work also provides a general approach to optimize the catalysis performance of bimetal compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号