首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ring‐shaped silica nanoparticles are synthesized with a high tetrakis(4‐carboxyphenyl)porphyrin (TCPP) content or silica/TCPP hybrid nanorings (HNRs) using a one‐pot sol‐gel reaction with a TCPP‐binding silica precursor for fluorescence imaging of tumor. The shape of the HNRs is a reflection of abundant ring‐shaped TCPP aggregates in the silica matrix. The HNRs are of a size that makes them susceptible to the enhanced permeability and retention effect. For comparison, the TCPP‐doped silica nanoparticles are synthesized using a conventional method. The nanoparticles are spherical in shape because little TCPP is contained in the silica matrix and are designated as TCPP‐containing silica nanospheres (NSs). The absorption bands of the HNRs shift by about 20 nm toward longer wavelengths compared with the TCPP bands. This redshift leads the excitation wavelength of the HNRs into the near‐infrared (NIR) region. Therefore, the HNRs are excited by NIR light to emit strong fluorescence, although the NSs emit no fluorescence. The PEGylated HNRs (PEG‐HNRs) are uncharged and possess a significantly longer blood circulation time than PEG‐NSs. The PEG‐HNRs accumulate in tumor through multiple factors including their size, uncharged surface, unique shape, and long circulation time in blood, resulting in the acquisition of clear images of tumor.  相似文献   

2.
Renal‐clearable nanoparticles have made it possible to overcome the toxicity by nonspecific accumulation in healthy tissues/organs due to their highly efficient clearance characteristics. However, their tumor uptake is relatively low due to the short blood circulation time and rapid body elimination. Here, this problem is addressed by developing renal‐clearable nanoparticles by controlled coating of sub‐6 nm CuS nanodots (CuSNDs) on doxorubicin ladened mesoporous silica nanoparticles (pore size ≈6 nm) for multimodal application. High tumor uptake of the as‐synthesized nanoparticles (abbreviated as MDNs) is achieved due to the longer blood circulation time. The MDNs also show excellent performance in bimodal imaging. Moreover, the MDNs demonstrated a photothermally sensitive drug release and pronounced synergetic effects of chemo‐photothermal therapy, which were confirmed by two different tumor models in vivo. A novel key feature of the proposed synthesis is the use of renal‐clearable CuSNDs and biodegradable mesoporous silica nanoparticles which also are renal‐clearable after degradation. Therefore, the MDNs would be rapidly degraded and excreted in a reasonable period in living body and avoid long‐term toxicity. Such biodegradable and clearable single‐compartment theranostic agents applicable in highly integrated multimodal imaging and multiple therapeutic functions may have substantial potentials in clinical practice.  相似文献   

3.
Fabricating theranostic nanoparticles combining multimode disease diagnosis and therapeutic has become an emerging approach for personal nanomedicine. However, the diagnostic capability, biocompatibility, and therapeutic efficiency of theranostic nanoplatforms limit their clinic widespread applications. Targeting to the theme of accurate diagnosis and effective therapy of cancer cells, a multifunctional nanoplatform of aptamer and polyethylene glycol (PEG) conjugated MoS2 nanosheets decorated with Cu1.8S nanoparticles (ATPMC) is developed. The ATPMC nanoplatform accomplishes photoluminescence imaging, photoacoustic imaging, and photothermal imaging for in vitro and in vivo tumor cells imaging diagnosis. Meanwhile, the ATPMC nanoplatform facilitates selective delivery of gene probe to detect intracellular microRNA aberrantly expressed in cancer cells and anticancer drug doxorubicin (DOX) for chemotherapy. Moreover, the synergistic interaction of MoS2 and Cu1.8S renders the ATPMC nanoplatform with superb photothermal conversion efficiency. The ATPMC nanoplatform loaded with DOX displays near‐infrared laser‐induced programmed chemotherapy and advanced photothermal therapy, and the targeted chemo‐photothermal therapy presents excellent antitumor efficiency.  相似文献   

4.
The poly(maleic anhydride‐alt‐1‐octadecene‐poly(ethylene glycol)) (C18PMH‐PEG) modified single‐walled carbon nanohorns (SWNHs) are designed with high stability and biocompatibility. The as‐prepared SWNHs/C18PMH‐PEG not only can serve as an excellent photothermal agent but also can be used as a promising photoacoustic imaging (PAI) agent both in vitro and in vivo due to its strong absorption in the near infrared (NIR) region. The PAI result reveals that the SWNHs/C18PMH‐PEG possesses ultra long blood circulation time and can significantly be accumulated at the tumor site through the enhanced penetration and retention (EPR) effect. The maximum accumulation of SWNHs/C18PMH‐PEG at tumor site could be achieved at the time point of 24 h after intravenous injection, which is considered to be the optimal time for the 808 nm laser treatment. The subsequent photothermal ablation of tumors can be achieved without triggering any side effects. Therefore, a PAI guided PTT platform based on SWNHs is proposed and highlights the potential theranostic application for biomedical uses.  相似文献   

5.
Recently, near‐infrared (NIR) absorbing conjugated polymeric nanoparticles have received significant attention in photothermal therapy of cancer. Herein, polypyrrole (PPy), a NIR‐absorbing conjugate polymer, is used to coat ultra‐small iron oxide nanoparticles (IONPs), obtaining multifunctional IONP@PPy nanocomposite which is further modified by the biocompatible polyethylene glycol (PEG) through a layer‐by‐layer method to acquire high stability in physiological solutions. Utilizing the optical and magnetic properties of the yielded IONP@PPy‐PEG nanoparticles, in vivo magnetic resonance (MR) and photoacoustic imaging of tumor‐bearing mice are conducted, revealing strong tumor uptake of those nanoparticles after intravenous injection. In vivo photothermal therapy is then designed and carried out, achieving excellent tumor ablation therapeutic effect in mice experiments. These results promise the use of multifunctional NIR‐absorbing organic‐inorganic hybrid nanomaterials, such as IONP@PPy‐PEG presented here, for potential applications in cancer theranostics.  相似文献   

6.
The ideal theranostic nanoplatform for tumors is a single nanoparticle that has a single semiconductor or metal component and contains all multimodel imaging and therapy abilities. The design and preparation of such a nanoparticle remains a serious challenge. Here, with FeS2 as a model of a semiconductor, the tuning of vacancy concentrations for obtaining “all‐in‐one” type FeS2 nanoparticles is reported. FeS2 nanoparticles with size of ≈30 nm have decreased photoabsorption intensity from the visible to near‐infrared (NIR) region, due to a low S vacancy concentration. By tuning their shape/size and then enhancing the S vacancy concentration, the photoabsorption intensity of FeS2 nanoparticles with size of ≈350 nm (FeS2‐350) goes up with the increase of the wavelength from 550 to 950 nm, conferring the high NIR photothermal effect for thermal imaging. Furthermore, this nanoparticle has excellent magnetic properties for T2‐weighted magnetic resonance imaging (MRI). Subsequently, FeS2‐350 phosphate buffer saline (PBS) dispersion is injected into the tumor‐bearing mice. Under the irradiation of 915‐nm laser, the tumor can be ablated and the metastasis lesions in liver suffer significant inhibition. Therefore, FeS2‐350 has great potential to be used as novel “all‐in‐one” multifunctional theranostic nanoagents for MRI and NIR dual‐modal imaging guided NIR‐photothermal ablation therapy (PAT) of tumors.  相似文献   

7.
The integration of efficient imaging for diagnosis and synergistic tumor therapy into a single‐component nanoplatform is much promising for high efficacy tumor treatment but still in a great challenge. Herein, a smart and versatile nanotheranostic platform based on hollow mesoporous Prussian blue nanoparticles (HMPBs) with perfluoropentane (PFP) and doxorubicin (DOX) inside, has been designed, for the first time, to achieve the distinct in vivo synergistic chemo‐thermal tumor therapy and synchronous diagnosis and monitoring by ultrasound (US)/photoacoustic (PA) dual mode imaging. The prepared HMPBs show excellent photothermal conversion properties with large molar extinction coefficient (≈1.2 × 1011m ?1 cm?1) and extremely high photothermal conversion efficiency (41.4%). Such a novel theranostic nanoplatform is expected to overcome the inevitable tumor recurrence and metastasis resulting from the inhomogeneous ablation of single thermal therapy, which will find a promising prospect in the application of noninvasive cancer therapy.  相似文献   

8.
Nanoscale coordination polymers (NCPs) self‐assembled from metal ions and organic bridging ligands exhibit many unique features promising for applications in nanomedicine. In this work, manganese dioxide (MnO2) nanoparticles stabilized by bovine serum albumin are encapsulated by NCP‐shells constructed based on high‐Z element hafnium (Hf) ions and c,c,t‐(diamminedichlorodisuccinato)Pt(IV) (DSP), a cisplatin prodrug. After further modification with polyethylene glycol (PEG), the formed BM@NCP(DSP)‐PEG can simultaneously serve as a radio‐sensitizer owing to the strong X‐ray attenuation capability of Hf to enhance radiotherapy, as well as a chemotherapeutic agent resulting from the reduction‐induced release of cisplatin. Meanwhile, the in situ generated oxygen resulting from MnO2‐triggered decomposition of tumor endogenous H2O2 will be greatly helpful for overcoming hypoxia‐associated radio‐resistance. Upon intravenous injection, BM@NCP(DSP)‐PEG shows efficient tumor homing as well as rapid renal excretion, as illustrated by magnetic resonance imaging and confirmed by biodistribution measurement. Notably, an excellent in vivo tumor growth inhibition effect is observed with BM@NCP(DSP)‐PEG nanoparticles after the combined chemoradiotherapy treatment. Therefore, the NCP‐based composite nanoparticles with inherent biodegradability and no appreciable in vivo toxicity may be a unique type of multifunctional nanoplatform responsive to different parameters in the tumor microenvironment, promising for cancer theranostics with great efficacy.  相似文献   

9.
The efficacy of radiation therapy (RT) is often limited by the poor response of hypoxia inside most solid tumors. The development of a theranostic nanoplatform for precision‐imaging‐guided sensitized RT for tumor hypoxia is still challenging. Herein, the creation of hypoxia‐targeted dendrimer‐entrapped gold nanoparticles complexed with gadolinium(III) (Gd‐Au DENPs‐Nit) for dual‐mode CT/MR imaging and sensitized RT of hypoxic tumors is reported. In this work, generation 5 poly(amidoamine) dendrimers are partially conjugated with Gd(III) chelator, entrapped with Au nanoparticles, and conjugated with hypoxia‐targeting agent nitroimidazole via a polyethylene glycol linker, and ending with chelation of Gd(III) and conversion of their leftover amine termini to acetamides. The designed dendrimer‐based nanohybrids with 3.2 nm Au cores exhibit an excellent X‐ray attenuation effect, acceptable r1 relaxivity (1.32 mM?1 s?1), and enhanced cellular uptake in hypoxic cancer cells, affording efficient dual‐mode CT/MR imaging of tumor hypoxia. Under X‐ray irradiation, the Gd‐Au DENPs‐Nit nanohybrids can produce reactive oxygen species, promote DNA damage, and prevent DNA repair, facilitating sensitized RT of hypoxic cancer cells in vitro and tumor hypoxia in vivo. The developed hypoxia‐targeted dendrimer‐based nanohybrids may be employed as both contrast agents and nanosensitizers for precision tumor hypoxia imaging and sensitized tumor RT.  相似文献   

10.
Facile preparation of multifunctional theranostic nanoplatforms with well‐controlled morphology and sizes remains an attractive in the area of nanomedicine. Here, a new kind of 2D transition metal dichalcogenide, rhenium disulfide (ReS2) nanosheets, with uniform sizes, strong near‐infrared (NIR) light, and strong X‐ray attenuation, is successfully synthesized. After surface modification with poly(ethylene glycol) (PEG), the synthesized ReS2‐PEG nanosheets are stable in various physiological solutions. In addition to their contrasts in photoacoustic imaging and X‐ray computed tomography imaging because of their strong NIR light and X‐ray absorptions, respectively, such ReS2‐PEG nanosheets can also be tracked under nuclear imaging after chelator‐free labeling with radioisotope ions, 99mTc4+. Efficient tumor accumulation of ReS2‐PEG nanosheets is then observed after intravenous injection into tumor‐bearing mice under triple‐modal imaging. The combined in vivo photothermal radiotherapy is further conducted, achieving a remarkable synergistic tumor destruction effect. Finally, no obvious toxicity of ReS2‐PEG nanosheets is observed from the treated mice within 30 d. This work suggests that such ultrathin ReS2 nanosheets with well‐controlled morphology and uniform sizes may be a promising type of multifunctional theranostic agent for remotely triggered cancer combination therapy.  相似文献   

11.
Acute kidney injury (AKI) is frequently associated with oxidative stress and causes high mortality annually in clinics. Nanotechnology‐mediated antioxidative therapy is emerging as a novel strategy for the treatment of AKI. Herein, a novel biomedical use of the endogenous biopolymer melanin as a theranostic natural antioxidant defense nanoplatform for AKI is reported. In this study, ultrasmall Mn2+‐chelated melanin (MMP) nanoparticles are easily prepared via a simple coordination and self‐assembly strategy, and further incorporated with polyethylene glycol (MMPP). In vitro experiments reveal the ability of MMPP nanoparticles to scavenge multiple toxic reactive oxygen species (ROS) and suppress ROS‐induced oxidative stress. Additionally, in vivo results from a murine AKI model demonstrate preferential renal uptake of MMPP nanoparticles and a subsequent robust antioxidative response with negligible side effects according to positron emission tomography/magnetic resonance (PET/MR) bimodal imaging and treatment assessment. These results indicate that the effectiveness of MMPP nanoparticles for treating AKI suggests the potential efficacy of melanin as a natural theranostic antioxidant nanoplatform for AKI, as well as other ROS‐related diseases.  相似文献   

12.
The development of nanotheranostic agents that integrate diagnosis and therapy for effective personalized precision medicine has obtained tremendous attention in the past few decades. In this report, biocompatible electron donor–acceptor conjugated semiconducting polymer nanoparticles (PPor‐PEG NPs) with light‐harvesting unit is prepared and developed for highly effective photoacoustic imaging guided photothermal therapy. To the best of our knowledge, it is the first time that the concept of light‐harvesting unit is exploited for enhancing the photoacoustic signal and photothermal energy conversion in polymer‐based theranostic agent. Combined with additional merits including donor–acceptor pair to favor electron transfer and fluorescence quenching effect after NP formation, the photothermal conversion efficiency of the PPor‐PEG NPs is determined to be 62.3%, which is the highest value among reported polymer NPs. Moreover, the as‐prepared PPor‐PEG NP not only exhibits a remarkable cell‐killing ability but also achieves 100% tumor elimination, demonstrating its excellent photothermal therapeutic efficacy. Finally, the as‐prepared water‐dispersible PPor‐PEG NPs show good biocompatibility and biosafety, making them a promising candidate for future clinical applications in cancer theranostics.  相似文献   

13.
The development of cancer combination therapies, many of which rely on nanoscale theranostic agents, has received increasing attention in recent years. In this work, polyethylene glycol (PEG) modified mesoporous silica (MS) coated single‐walled carbon nanotubes (SWNTs) are fabricated and utilized as a multifunctional platform for imaging guided combination therapy of cancer. A model chemotherapy drug, doxorubicin (DOX), could be loaded into the mesoporous structure of the obtained SWNT@MS‐PEG nano‐carriers with high efficiency. Upon stimulation under near‐infrared (NIR) light, photothermally triggered drug release from DOX loaded SWNT@MS‐PEG is observed inside cells, resulting in a synergistic cancer cell killing effect. As revealed by both photoacoustic (PA) and magnetic resonance (MR) imaging, we further uncover efficient tumor accumulation of SWNT@MS‐PEG/DOX after intravenous injection into mice. In vivo combination therapy using this agent is further demonstrated in a mouse tumor model, achieving a remarkable synergistic anti‐tumor effect superior to that obtained by mono‐therapy. Our work presents a new type of theranostic nano‐platform, which could load therapeutic molecules with high efficiency, be responsive to external NIR stimulation, and at the same time serve as a diagnostic imaging agent.  相似文献   

14.
Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near‐infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length‐controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well‐defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4‐styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS‐coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS‐coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes.  相似文献   

15.
Multifunctional nanodrugs integrating multiple therapeutic and imaging functions may find tremendous biomedical applications. However, the development of a simple yet potent theranostic nanosystem with a high payload and microenvironment responsiveness enhancing imaging‐guided cancer therapy is still a great challenge. Herein, a kind of MnCO‐entrapped mesoporous polydopamine nanoparticles are developed, which reach a 1.5 mg payload per gram carrier and exhibit marked theranostic capability through effective CO/Mn2+ generation and photothermal conversion inside the H+ and H2O2‐enriched tumor microenvironment, for a magnetic resonance/photoacoustic bimodal imaging‐guided tumor therapy. The multifunctional nanosystem exhibits a biocompatibility highly desirable for in vivo application and superior performance in inhibiting tumor growth and recurrence via combination CO and photothermal therapy.  相似文献   

16.
Telluride molybdenum (MoTe2) nanosheets with wide near‐infrared (NIR) absorbance are functionalized with polyethylene glycol‐cyclic arginine‐glycine‐aspartic acid tripeptide (PEG‐cRGD). After loading a chemotherapeutic drug (doxorubicin, DOX), MoTe2‐PEG‐cRGD/DOX is used for combined photothermal therapy and chemotherapy. With the high photothermal conversion efficiency, MoTe2‐PEG‐cRGD/DOX exhibits favorable cells killing ability under NIR irradiation. Owing to the cRGD‐mediated specific tumor targeting, MoTe2‐PEG‐cRGD/DOX shows efficient accumulation in tumors to induce a strong tumor ablation effect. MoTe2‐PEG‐cRGD nanosheets, which are relatively stable in the circulation, could be degraded under NIR ray. The in vitro and in vivo experimental results demonstrate that this theranostic nanoagent, which could accumulate in tumors to allow photothermal imaging and combined therapy, is readily degradable in normal organs to enable rapid excretion and avoid long‐term retention/toxicity, holding great potential to treat tumor effectively.  相似文献   

17.
The booming development of nanomedicine offers great opportunities for cancer diagnostics and therapeutics. Herein, a magnetic targeting‐enhanced cancer theranostic strategy using a multifunctional magnetic‐plasmonic nano‐agent is developed, and a highly effective in vivo tumor photothermal therapy, which is carefully planed based on magnetic resonance (MR)/photoacoustic (PA) multimodal imaging, is realized. By applying an external magnetic field (MF) focused on the targeted tumor, a magnetic targeting mediated enhanced permeability and retention (MT‐EPR) effect is observed. While MR scanning provides tumor localization and reveals time‐dependent tumor homing of nanoparticles for therapeutic planning, photoacoustic imaging with higher spatial resolution allows noninvasive fine tumor margin delineation and vivid visualization of three dimensional distributions of theranostic nanoparticles inside the tumor. Utilizing the near‐infrared (NIR) plasmonic absorbance of those nanoparticles, selective photothermal tumor ablation, whose efficacy is predicted by real‐time infrared thermal imaging intra‐therapeutically, is carried out and then monitored by MR imaging for post‐treatment prognosis. Overall, this study illustrates the concept of imaging‐guided MF‐targeted photothermal therapy based on a multifunctional nano‐agent, aiming at optimizing therapeutic planning to achieve the most efficient cancer therapy.  相似文献   

18.
The critical issue that hinders the translation of nanomaterials from basic research to clinical trials is their potential toxicity caused by long-term body retention. It is still a huge challenge to integrate renal-clearable and theranostic properties into one nanomedicine, especially exploring the nanomaterials with optical absorption in the second near-infrared light (NIR II) biowindow with deep penetration and less tissue scattering. Here, ultrasmall polypyrrole (PPy, ≈2 nm)-based theranostic agents via a facile and green one-step method, which exhibit fluorescence (FL)/photoacoustic (PA)/NIR II multimodal imaging, superior photostability, as well as high photothermal conversion efficiency of 33.35% at 808 nm and 41.97% at 1064 nm is developed. Importantly, these ultrasmall PPy-PEG nanoparticles (NPs) reveal abundant tumor accumulation and efficient renal clearance. Both in vitro and in vivo studies indicate that ultrasmall PPy-PEG NPs have excellent photothermal effect under NIR II laser irradiation that can effectively eliminate the tumors with extremely low systemic toxicity.  相似文献   

19.
Increasing occurrences of degenerative diseases, defective tissues, and severe cancers heighten the importance of advanced biomedical treatments, which in turn enhance the need for improved biomaterials with versatile theranostic functionalities yet using minimal design complexity. Leveraging the advantages of citrate chemistry, a multifunctional citrate‐based biomaterial platform is developed with both imaging and therapeutic capabilities utilizing a facile and efficient one‐pot synthesis. The resulting aniline tetramer doped biodegradable photoluminescent polymers (BPLPATs) not only possess programmable degradation profiles (<1 to > 6 months) and mechanical strengths (≈20 MPa to >400 MPa), but also present a combination of intrinsic fluorescence, photoacoustic (PA), and electrical conductivity properties. BPLPAT nanoparticles are able to label cells for fluorescence imaging and perform deep tissue detection with PA imaging. Coupled with significant photothermal performance, BPLPAT nanoparticles demonstrate great potential for thermal treatment and in vivo real‐time detection of cancers. The results on BPLPAT scaffolds demonstrate 3D high‐spatial‐resolution deep tissue PA imaging (23 mm), as well as promote growth and differentiation of PC‐12 nerve cells. It is envisioned that the biodegradable dual‐imaging‐enabled electroactive citrate‐based biomaterial platform will expand the currently available theranostic material systems and open new avenues for diversified biomedical and biological applications via the demonstrated multifunctionality.  相似文献   

20.
Nanotechnology‐based diagnostics and therapeutics usually suffer from long‐term retention of nanosized devices in the major organs, which may cause unwanted side effects. Herein, we describe the development of ultra‐small silica‐polymer hybrid dots (Sdots) through the self‐assembly between a polyethylene oxide‐poly(propylene oxide)‐polyethylene oxide (PEO‐PPO‐PEO) triblock copolymer and a silica precursor. Sdots feature a silica particle size of 4.2 nm and a hydrated size of 14 nm. The larger hydrated size is related to their polyethylene glycol (PEG) surface ligands, which evolve from the PEO blocks in the copolymer. The densely packed PEG corona can effectively shield the hybrid from reticuloendothelial uptake, which gives rise to rapid and thorough hepatobiliary clearance. In vivo experiments demonstrated that, upon intravenous injection, almost complete clearance of Sdots from mouse bodies could be realized through hepatobiliary excretion within only 5 days. Compared to renal clearable nanoparticles with short blood‐circulation times, the proposed Sdots have a prolonged blood‐circulation half‐life of 19 h, so that the Sdots could effectively accumulate at a subcutaneous transplanted tumor through enhanced penetration and retention. As the PPO core of the Sdots can be utilized to accommodate hydrophobic guest molecules, such as anticancer drugs, these Sdots can prospectively serve as fast‐clearable drug carriers for targeted cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号