首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用蒸发诱导自组装和后植入的方法,制备出了在紫外光照下可变色的二氧化硅/磷钼酸复合薄膜.结果表明,磷钼酸粒子很好的分散并牢牢附着在有机胺改性的二氧化硅介孔薄膜的孔道中;经紫外光照后发生电荷转移,杂多阴离子被还原成杂多蓝,由无色变成蓝色,而薄膜的褪色过程则与氧气存在有关.  相似文献   

2.
存储材料螺吡喃的单光子写入和双光子读出   总被引:1,自引:0,他引:1  
对紫外单光子激发的光活性螺吡喃薄膜样品作红外双光子激发的荧光探测研究,从中获得了关于信息的写入和读出中的一些有用信息。  相似文献   

3.
    
Photochromic molecular switches immobilized by direct contact with surfaces typically show only weak response to optical excitation, which often is not reversible. In contrast, here, it is shown that a complete and reversible ring‐opening and ring‐closing reaction of submonolayers of spironaphthopyran on the Bi(111) surface is possible. The ring opening to the merocyanine isomer is initiated by ultraviolet light. Switching occurs in a two‐step process, in which after optical excitation, an energy barrier needs to be overcome to convert to the merocyanine form. This leads to a strong temperature dependence of the conversion efficiency. Switching of the merocyanine isomer back to the closed form is achieved by a temperature increase. Thus, the process can be repeated in a fully reversible manner, in contrast to previously studied nitrospiropyran molecules on surfaces. This is attributed to the destabilization of the merocyanine isomer by the electron‐donating nature of the naphtho group and the reduced van der Waals interaction of the Bi(111) surface. The result shows that molecules designed for switching in solutions need to be modified to function in direct contact with a surface.  相似文献   

4.
    
Mesoporous silica containing multiple organometallic active sites is synthesized using a traditional post‐synthesis complexation technique and a surfactant‐directed assembly approach. Systematic spectroscopic studies and structure analysis indicate that catalytic mesoporous silica with controlled composition and pore structure can be readily synthesized. Catalytic performance examined by an aqueous medium two‐step cascade reaction indicates that these materials possess excellent catalytic activity, reusability, and an interesting synergic effect. This work provides novel synthesis platforms towards multifunctional catalysts for more efficient chemical transformations.  相似文献   

5.
近年来,由于主客体效应,以多孔二氧化硅作为反应容器组装单分散的半导体量子点引起了人们很大的兴趣。本文主要介绍了介孔二氧化硅的基本概念及其制备方法、机理以及介孔组装半导体量子点这一新学科的研究状况,并展望了它的发展前景。  相似文献   

6.
    
Medical implants are widely used in clinical practice, such as cardiovascular stenting, maxillofacial surgery, and orthopedics. However, most of the traditional implant operations are open and invasive, resulting in massive dissection of soft tissue and interruption of blood supply. The accurate navigation for the implant operations is considered as one of the most effective ways to reduce the damage, which is urgently desired in clinic. Herein, a biocompatible NIR-II J-aggregates labelled mesoporous implant for imaging-guided osteosynthesis with minimal invasion is reported. Mesoporous silica layer with vertical channels is grown on the surface of titanium plate, which can provide the confining space for the formation of the FD-1080 J-aggregates. Both the absorption and fluorescence peaks of the FD-1080 J-aggregates are located in NIR-II window (beyond 1300 nm), which are ideal for high resolution and real time surgical navigation in deep tissue. NIR-II imaging can clearly display the location and outline of the implant both in vitro and in vivo. This NIR-II imaging-guided osteosynthesis can effectively reduce the surgical wound and operational duration, which is crucial for the implant surgeries.  相似文献   

7.
8.
    
In vivo delivery of siRNAs designed to inhibit genes important in cancer and other diseases continues to be an important biomedical goal. A new nanoparticle construct that is engineered for efficient delivery of siRNA to tumors is now described. The construct comprises a 47‐nm mesoporous silica nanoparticle core coated with a crosslinked polyethyleneimine–polyethyleneglycol copolymer, carrying siRNA against the human epidermal growth factor receptor type 2 (HER2) oncogene, and coupled to the anti‐HER2 monoclonal antibody (trastuzumab). The construct is engineered to increase siRNA blood half‐life, enhance tumor‐specific cellular uptake, and maximize siRNA knockdown efficacy. The optimized anti‐HER2 nanoparticles produce apoptotic death in HER2 positive (HER2+) breast cancer cells grown in vitro, but not in HER2 negative (HER2?) cells. One dose of the siHER2–nanoparticles reduces HER2 protein levels by 60% in trastuzumab‐resistant HCC1954 xenografts. Administration of multiple intravenous doses over 3 weeks significantly inhibits tumor growth (p < 0.004). The siHER2‐nanoparticles have an excellent safety profile in terms of blood compatibility and low cytokine induction, when exposed to human peripheral blood mononuclear cells. The construct can be produced with high batch‐to‐batch reproducibility and the production methods are suitable for large‐scale production. These results suggest that this siHER2‐nanoparticle is ready for clinical evaluation.  相似文献   

9.
    
Concentration polarization-induced lithium dendrites seriously impede the practical application of high-energy-density lithium metal batteries. Porous materials that aim to inhibit lithium dendrites are extensively explored. However, their effects are still limited by the intrinsic features of the pores, especially channel geometry and surface properties. Herein, a separator modification strategy of blocking “dendritic deposition” via “dendritic channels” is proposed. A porous shield-like film is formed on the polypropylene separator through the close packing of ultra-small (≈100 nm) silica nanospheres with unique dendritic mesopores (DMS). Besides the hierarchical pores homogenizing the ion flux, the DMS film also provides abundant Si(OH)x groups, preferentially adsorbing the TFSI in the electrolyte and accelerating the transport of Li+. Most notably, the dendritic mesochannels with high complexity can diversify the growth directions of lithium and contribute to a more substantial homogenizing process of Li+. Consequently, a dendrite-free deposition with 1000 stable cycles in Li|Li symmetric cells even at 10 mA cm−2 is achieved. This study provides a scalable approach for the fabrication of mesoporous separators and offers a fresh perspective on the future design of advanced separators utilized for dendrite suppression.  相似文献   

10.
    
A series of poly(N‐isopropylacrylamide)‐coated mesoporous silica nanoparticle materials (PNiPAm‐MSNs) has been synthesized by a surface‐initiated living radical polymerization with a reversible addition–fragmentation chain transfer (RAFT) reaction. The structure and the degree of polymerization of the PNiPAm‐MSNs has been characterized by a variety of techniques, including nitrogen sorption analysis, 29Si and 13C solid‐state NMR spectroscopy, transmission electron microscopy (TEM), and powder X‐ray diffraction (XRD). The thermally induced changes of the surface properties of these polymer‐coated core–shell nanoparticles have been determined by examining their partition activities in a biphasic solution (water/toluene) at different temperatures.  相似文献   

11.
    
Photodynamic therapy (PDT) is a well‐established clinical treatment modality for various diseases. However, reactive oxygen species (ROS) generated by photosensitizers(PS) under proper irradiation exhibits the extremely short life span (<200 ns) and severely limited diffusion distance (20 nm), so the damage of ROS to biomolecules, especially DNA, is strongly confined to the immediate vicinity of ROS generation. In this report, an efficient nuclear‐targeted delivery strategy is proposed by using TAT and RGD peptides co‐conjugated mesoporous silica nanoparticles (MSNs) as PS carriers. The conjugation of TAT peptides enable the nuclear penetration of MSNs for efficient accumulation of PS inside nuclei. The intranuclear‐accumulated PS can generate ROS upon irradiation right inside nuclei to destroy DNA instantaneously. For the purpose of in vivo applications, the co‐conjugated RGD peptides endow the nuclear‐targeted delivery system with specific binding and recognition to tumor vasculature and tumor cell membranes for significantly enhanced specificity and reduced side effects. Through intravenous injection of these nanosystems in tumor‐bearing mice at a rather low PS dose of 2 mg/kg, tumor growth is efficiently inhibited by an extremely low irradiation dose of 6 J/cm2. This work presents a new paradigm for specific PDT with high efficacy and low side effects in vivo.  相似文献   

12.
    
Mesoporous silica nanoparticles (MSNs) functionalized with redox‐sensitive or pH‐sensitive nanovalves for doxorubicin delivery and release by using recombinant human H chain ferritin (HFn) as a cap have been designed and fabricated. In both cases, transmission electron microscope observatory, dynamic light scattering change, Fourier transform infrared spectra examination, thermogravimetric analysis show that HFn can be chemically bonded to MSNs while retaining its ability to target transferrin receptor 1 (TfR1). Cargo loading and release studies demonstrate that HFn is an efficient capping agent, blocking the pores of MSN preventing cargo molecules from diffusing out, and is responsive to redox stimuli or pH changes. More importantly, HFn can not only cap the MSNs, but also enables targeted cargo delivery to malignant cells by binding to the TfR1 that has been overexpressed in various tumors, which can be reflected by the cell viability and fluorescence microscope analysis results comparing with cyclodextrin as the capping agent and TfR1 blocking assay. The in vivo study reveals the excellent efficacy of doxorubicin loaded and HFn capped MSNs on suppression of tumor growth. The new developed drug delivery system features mutually benefit and mutually support, providing strategy for achieving specific‐site therapeutics delivery systems.  相似文献   

13.
    
Vaccine adjuvants that can induce robust protective immunity are highly sought after for the development of safer and more effective vaccines. Vaccine formulation parameters that govern efficacy are still far from clear, such as the diverse impacts of codelivering agonist molecules for innate cell receptors (e.g., pattern recognition receptors). In this study, a mesoporous silica‐templating approach is used to fabricate protein antigen (ovalbumin) particles covalently functionalized with agonists for NOD‐like receptor 2 (NOD2) and Toll‐like receptor 9 (TLR9). Particle‐induced combinatorial NOD2/TLR9 signaling results in synergistic inflammatory cytokine secretion by mouse macrophages (RAW 264.7). Administration of NOD2/TLR9 particles in mice results in adaptive immune responses that are both quantitatively and qualitatively different than those resulting from administration of particles conjugated with either NOD2 or TLR9 agonists alone. While delivery of NOD2 agonists alone activates T helper 2 (Th2)‐type responses (and no CD8+ T cell activation) and delivery of TLR9 agonists alone activates CD8+ T cell and T helper 1 (Th1)‐type responses, codelivery of NOD2 and TLR9 agonists enhances Th1‐type responses and abrogates CD8+ T cell activation. The results illustrate that in the particle‐based system, NOD2 activation plays different roles in polarizing adaptive immune responses depending on coactivation of TLR9.  相似文献   

14.
报道了在无水无氧环境下利用热解反应将硒化锌量子点组装入介孔二氧化硅有序孔道内的方法,采用X射线衍射、透射电子显微成像及能量散射谱等测试方法分析了体系的微观结构,并采用紫外-可见光吸收光谱仪和荧光光谱仪研究了其光学性质.结果表明硒化锌量子点被组装在介孔二氧化硅的孔道内;与硒化锌体材料本征吸收谱相比,组装在介孔内的量子点的吸收光谱表现出显著的蓝移,这归结于量子尺寸效应.  相似文献   

15.
    
Colloidal assembly of silica (nano)particles is a powerful method to design functional materials across multiple length scales. Although this method has enabled the fabrication of a wide range of silica‐based materials, attempts to design and synthesize porous materials with a high level of tuneability and control over pore dimensions have remained relatively unsuccessful. Here, the colloidal assembly of silica nanoparticles into mesoporous silica microspheres (MSMs) is reported using a discrete set of silica sols within the confinement of a water‐in‐oil emulsion system. By studying the independent manipulation of different assembly parameters during the sol–gel process, a design strategy is outlined to synthesize MSMs with excellent reproducibility and independent control over pore size and overall porosity, which does not require additional ageing or post‐treatment steps to reach pore sizes as large as 50 nm. The strategy presented here can provide the necessary tools for the microstructural design of the next generation of tailor‐made silica microspheres for use in separation applications and beyond.  相似文献   

16.
    
Photoswitches with multiple fluorescence states known as photofluorochromism upon photo-induced isomerization show practical applications in information storage, anticounterfeiting, and sensors. However, it is still challenging to realize rapid isomerization, efficient fluorescence, and gradient signal output simultaneously. Herein, by incorporating luminogenic units with aggregation-induced emission (AIE) features into photo-responsive hydrazone, a series of novel photofluorochromic AIE compounds are developed. These newly designed compounds exhibit quantum yields of up to 38.4% and could undergo reversible and swift photo-isomerization upon 450/365 nm irradiation. Accordingly, the fabricated photopatterns based on them are utilized as quantitatively described images for information storage, which show excellent rewritability and intensity-variable fluorescence with a high resolution of 10 µm. This work provides a new strategy to develop intelligent photopattern systems with continuous gradient fluorescence for information storage and cybernetics.  相似文献   

17.
18.
    
Mimicking the hierarchically anisotropic structure and excellent mechanical properties of natural tissues, such as tendons and ligaments, using biomaterials is challenging. Despite recent achievements with anisotropic hydrogels, limitations remain because of difficulties in achieving both structural and mechanical characteristics simultaneously. A simple approach for fabricating hybrid hydrogels with a hierarchically anisotropic structure and superior mechanical properties that are reminiscent of tendons or ligaments is proposed. Alginate–polyacrylamide double‐network (DN) hydrogels incorporated with high aspect ratio mesoporous silica microparticles are stretched and fixed via subsequent drying and ionic crosslinking to achieve multiscale structures composed of an anisotropically aligned polymer network embedded with aligned microparticles. The mechanical properties of hydrogels can be further controlled by the degree of stretching, quantities, and functional groups of inorganic microparticles, and types of crosslinking cations. The subsequent reswelling results in a high water content (>80%) similar to that of natural tendons while high strength, modulus, and toughness are maintained. The optimized anisotropic hybrid hydrogel exhibits a tensile modulus of 7.2 MPa, strength of 1.3 MPa, and toughness of 1.4 MJ m?3 even in the swollen state, which is 451‐, 27‐, and 2.2 times higher than that observed in the non‐swollen tough DN hydrogel. This study suggests a new strategy for fabricating anisotropic hydrogels with superior mechanical properties to develop new biomaterials for artificial tendons or ligaments.  相似文献   

19.
    
Nanoparticle-based combination therapy strategy of photothermal therapy (PTT) and immunotherapy is an attractive cancer treatment for ablating tumors and eliciting host immune responses. However, this strategy is often hampered by tedious treatment process and limited immune response, and usually needs to be combined with checkpoint blockades to enhance therapeutic effect. Herein, a nanoplatform with mesoporous silica nanoparticles (MSNs) as a vector, which integrated photothermal agent polydopamine (PDA), model antigen ovalbumin (OVA), and antigen release promoter ammonium bicarbonate (ABC) in an easy way for melanoma PTT-immunotherapy is designed. The formulated MSNs-ABC@PDA-OVA nanovaccine exhibits excellent photothermal properties and effectively eliminates primary tumors. Under laser irradiation, the MSNs-ABC@PDA-OVA nanovaccine realizes rapid antigen release and endosome escape, enhances dendritic cells activation and maturation, facilitates migration to tumor-draining lymph nodes, and induces robust antitumor immune responses. Impressively, single injection of MSNs-ABC@PDA-OVA combines with single round of PTT successfully eradicates melanoma tumors with a cure rate of 75% and generates strong immunological memory to inhibit tumor recurrence and lung metastasis. Hence, the research offers a simple and promising strategy of synergistic PTT-immunotherapy to effectively treat cancer.  相似文献   

20.
    
A novel drug‐formulation protocol is developed to solve the delivery problem of hydrophobic drug molecules by using inorganic mesoporous silica nanocapsules (IMNCs) as an alternative to traditional organic emulsions and liposomes while preserving the advantages of inorganic materials. The unique structures of IMNCs are engineered by a novel fluoride‐silica chemistry based on a structural difference‐based selective etching strategy. The prepared IMNCs combine the functions of organic nanoemulsions or nanoliposomes with the properties of inorganic materials. Various spherical nanostructures can be fabricated simply by varying the synthetic parameters. The drug loading amount of a typical highly hydrophobic anticancer drug‐camptothecin (CPT) in IMNCs reaches as high as 35.1 wt%. The intracellular release of CPT from carriers is demonstrated in situ. In addition, IMNCs can play the role of organic nanoliposome (multivesicular liposome) in co‐encapsulating and co‐delivering hydrophobic (CPT) and hydrophilic (doxorubicin, DOX) anticancer drugs simultaneously. The co‐delivery of multi‐drugs in the same carrier and the intracellular release of the drug combinations enables a drug delivery system with efficient enhanced chemotherapeutic effect for DOX‐resistant MCF‐7/ADR cancer cells. The special IMNCs‐based “inorganic nanoemulsion”, as a proof‐of‐concept, can also be employed successfully to encapsulate and deliver biocompatible hydrophobic perfluorohexane (PFH) molecules for high intensity focused ultrasound (HIFU) synergistic therapy ex vivo and in vivo. Based on this novel design strategy, a wide range of inorganic material systems with similar “inorganic nanoemulsion or nanoliposome” functions will be developed to satisfy varied clinical requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号