首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Enantiomeric glutamate gelators containing a spiropyran moiety are designed and found to self‐assemble into a nanohelix through gelation. Upon alternating UV and visible light irradiation, the spiropyran experiences a reversible change between a blue zwitterionic merocyanine state and a colorless closed ring state spiropyran in supramolecular gels. This photochromic switch causes a series of subsequent changes in the optical, chiroptical, morphological properties from supramolecular to macroscopic levels. While the solution of the gelator molecules does not show any circular dichroism (CD) signal in the region of 250–700 nm due to the fact that the chromophore is far from the chiral center, the gel shows chiroptical signals such as CD and circularly polarized luminescence (CPL) because of the chirality transfer by the self‐assembly. These signals are reversible upon alternating UV/vis irradiation. Therefore, a quadruple optical and chiroptical switch is developed successfully. During such process, the self‐assembled nanostructures from the enantiomeric supramolecular gels also undergo a reversible change between helices and fibers under the alternating UV and visible light trigger. Furthermore, a rewritable material fabricated from their xerogels on a glass is developed. Such rewritable material can be efficiently printed over 30 cycles without significant loss in contrast and resolution using UV and visible light.  相似文献   

2.
A series of hybrid materials based on chiral nematic mesoporous organosilica (CNMO) films infiltrated with liquid crystalline hydrogen‐bonded assemblies is prepared and characterized with respect to the mutual manipulation of the photonic properties of the host and the liquid‐crystalline behavior of the guest. Detailed differential scanning calorimetry studies reveal the impact of confinement on the mesomorphic behavior of the liquid crystalline assemblies in the pores of the CNMO films. The photonic properties of the chiral nematic mesoporous host can be controlled by changing the temperature or irradiating the films with UV light. These stimuli‐induced phase transitions are accompanied by changes in the orientational order of the mesogens as revealed by 19F NMR spectroscopy. The combination of confinement and changes in the molecular orientation in a unique hybrid material based on hydrogen‐bonded liquid crystals and a porous host with a chiral nematic mesostructure is an interesting concept for the design of optical sensors, reflectors, or filters.  相似文献   

3.
A dendron‐substituted tetraphenylethene low molecular weight gelator (LMWG)compound, LMWG 1, is designed and investigated. Gelation‐induced fluorescence enhancement is observed for the gel based on LMWG 1 and its fluorescence can be reversibly tuned by varying the temperature of the ensemble. The photoinduced energy‐transfer can occur between LMWG 1 and PI 2 (perylene diimide) in the gel phase, but it cannot occur in the corresponding solution. The emission color of the gel of LMWG 1 and PI 2 can be tuned from cyan, yellow, to red by varying the concentration of PI 2 . By taking advantage of the photochromic transformation of spiropyran, the emission color of the organogels based on LMWG 1 and SP 3 can be switched by alternating UV and visible‐light irradiations. The emission color can also be tuned by varying the irradiation time. In this way, organogels based on LMWG 1 with multiemission color can be achieved in the presence of SP 3 after light irradiations.  相似文献   

4.
Single‐walled carbon nanotubes (SWCNTs) are functionalized with a spiropyran derivative, which is attached non‐covalently to the SWCNT's sidewall via a pyrene anchor group. Using this non‐covalent functionalization strategy, individual SWCNTs can be stabilized in solution without the need for additional surfactants. Bright luminescence confirms the presence of individual tubes in the thus‐prepared samples. In these samples, the majority of pyrene‐spiropyran molecules are attached to the walls of the SWCNTs. Upon complex formation with the SWCNT, the switching moiety retains its ability to switch, i.e., to undergo reversible transformations between the closed spiropyran and the opened merocyanine form, and is stable over many cycles of operation.  相似文献   

5.
The induction of electrohydrodynamic instabilities in nematic liquid crystals through light illumination are reported. For this purpose, a photochromic spiropyran is added to the liquid crystal mixture. When an electrical field is applied in the absence of UV light, the homeotropic liquid crystal reorients perpendicular to the electrical field driven by its negative dielectric anisotropy. Upon exposure to UV light, the nonionic spiropyran isomerizes to the zwitterionic merocyanine form inducing electrohydrodynamic instabilities which turns the cell from transparent into highly scattering. The reverse isomerization to closed‐ring spiropyran form occurs thermally or under visible light, which stops the electrohydrodynamic instabilities and the cell becomes transparent again. It is demonstrated that the photoionic electrohydrodynamic instabilities can be used for light regulation. Local exposure, either to drive the electrohydrodynamics or to remove them enables the formation of colored images.  相似文献   

6.
Multifunctional conjugated co‐oligomers with electrochromic and photochromic properties are synthesized by a cross‐coupling polycondensation reaction between bis(trialkylstannyl)‐3,4‐ethylenedioxythiophene and a phenylene or thienylene derivative bearing a photoresponsive dithienylethene (DE) moiety. The oligomer exhibits a reversible change between the neutral and oxidized states of the main chain upon electrochemical doping and dedoping. Furthermore, the oligomer shows reversible photoisomerization between the open and closed forms of the DE group in the side chain upon irradiation with ultraviolet and visible light. As a consequence, the oligomers possess various electronic structures that show cyclically reversible changes via the electrochemical doping and dedoping, and photoisomerization, producing four types of colored films in an oligomer system. Among the four types of electronic structures, only the dopant‐free oligomer film with the open form of the DE group shows visible fluorescence. To the best of our knowledge, the present conjugated oligomers are the first to exhibit both electrochromic and photochromic functions with cyclical reversibility.  相似文献   

7.
The synthesis of two cyan color (blue and green emission) displaying high molecular weight 2,6‐bis(pyrazolyl)pyridine‐co‐octylated phenylethynyl conjugated polymers (CPs) is presented. The conjugated polymers are solution‐processed to prepare spin coated thin films and self‐assembled nano/microscale spheres, exhibiting cyan color under UV. Additionally, the metal coordinating ability of the 2,6‐bis(pyrazolyl)pyridine available on the surface of the CP films and spheres is exploited to prepare red emitting Eu(III) metal ion containing conjugated polymer (MCCP) layer. The fabricated hybrid (CP/MCCP) films and spheres exhibit bright white‐light under UV exposure. The Commission Internationale de l'Eclairage (CIE) coordinates are found to be (x = 0.33, y = 0.37) for hybrid films and (x = 0.30, y = 0.35) for hybrid spheres. These values are almost close to the designated CIE coordinates for ideal white‐light color (x = 0.33, y = 0.33). This easy and efficient fabrication technique to generate white‐color displaying films and nano/microspheres signify an important method in bottom‐up nanotechnology of conjugated polymer based hybrid solid state assemblies.  相似文献   

8.
We have identified viable operating principles for the modulation of optical signals under the influence of optical stimulations. They are based on the overlap between the emission bands of a fluorescent compound and the absorption bands of one of the two forms of a bistable photochromic switch. Under these conditions, the photoinduced interconversion of the two states of the photochrome modulates efficiently the emission intensity of the fluorophore. We have implemented this mechanism for intermolecular fluorescence modulation with multilayer structures. They consist of two quartz plates sandwiching two overlapping polymer layers. One of the polymers is doped with a fluorescent benzofurazan. The other contains a photochromic spiropyran. The multilayer assembly is operated with two light sources. One of them is centered at the excitation wavelength of the fluorophore, where neither of the two states of the photochrome absorbs. The other light source is switched between ultraviolet and visible wavelengths to induce the interconversion between the two states of the photochrome. The light emitted by the fluorescent component has to propagate through the photochromic layer before reaching a detector. It can do so efficiently for only one of the two states of the photochrome. It follows that a measurement of the light intensity reaching the detector can read the state of the photochromic switch, which in turn is written and erased with optical stimulations. Thus, our strategy for all‐optical processing can be used to store and retrieve binary digits, as well as to implement optical inversion, with the aid of engineered molecule‐based components.  相似文献   

9.
Semiconducting conjugated polymers with photoswitching behavior are highly demanded for field‐effect transistors (FETs) with tunable electronic properties. Herein a new design strategy is established for photoresponsive conjugated polymers by incorporating photochromic units (azobenzene) into the flexible side alkyl chains. It is shown that azobenzene groups in the side chains of the DPP (diketopyrrolopyrrole)‐quaterthiophene polymer ( PDAZO ) can undergo trans/cis photoisomerization in fully reversible and fast manner. Optically tunable FETs with bistable states are successfully fabricated with thin films of PDAZO . The drain‐source currents are reduced by 80.1% after UV light irradiation for ≈28 s, which are easily restored after further visible light irradiation for ≈33 s. Such fast optically tunable FETs are not reported before. Moreover, such current photomodulation can be implemented for multiple light irradiation cycles with good photofatigue resistance. Additionally, thin film charge mobility of PDAZO can be reversibly modulated by alternating UV and visible light irradiations. On the basis of theoretical calculations and GIWAXS data, it is hypothesized that the dipole moment and configuration changes associated with the trans‐/cis‐photoisomerization of azobenzene groups in PDAZO can affect the respective intra‐chain and inter‐chain charge transporting, which is responsible for the optically tunable behavior for FETs with thin films of PDAZO .  相似文献   

10.
In this Full Paper, the possibility of reversibly changing the diffraction efficiency of gratings, fabricated by soft molding lithography on polymer films, containing photochromic molecules, is demonstrated. In particular, alternating UV and visible laser irradiation of the gratings causes the doped photochromic molecules to undergo transformations, which induce reversible dimensional changes to the samples. As a result, reversible changes are monitored in the intensity of the beams of a diode laser, transmitted and diffracted from the gratings. These changes affect the diffraction efficiency, which is increased upon irradiation with UV and decreased after irradiation with visible laser light. Such gratings are promising candidates for the fabrication of modern optical components such as optical switching devices.  相似文献   

11.
CdS quantum dot (QD) loaded WO3 films, fabricated by screen printing and short‐time chemical bath deposition (CBD) techniques, have been proven to have an efficient visible‐light‐driven photochromic response. One of the striking features of such a photochromic system is its remote photochromic characteristic. The photogenerated electrons in CdS are injected into WO3 to cause the color change of WO3, while CdS does not show any photochromism. Compared to bare WO3 films, the spectral sensitivity of remote photochromism in the CdS QD loaded WO3 films is red‐shifted. The onset wavelength for remote, the decoloration time for CdS QD loaded WO3 films was found to be significantly shorter than that for bare WO3 films, probably due to their different electron trapping processes. Bandgap excitation in bare WO3 creates deeply trapped electrons in the bulk, whereas the electrons injected from the QDs are trapped at shallow surface states in the remote photochromic system. The successful tailoring of photochromic coloration employing a simple procedure would provide numerous opportunities for designing photo‐ and electrochromic materials with the optimal architecture and tunable properties.  相似文献   

12.
We report the synthesis of some diarylethene derivatives attached to phenol moieties, which show remarkable photochromic reactions. A dithienylethene group attached to the o‐phenol moiety (1,2‐bis[2,4‐dimethyl‐5‐(o‐hydroxyphenyl)‐3‐thienyl]hexafluorocyclopentene) was polymerized according to Hay's method; the resulting film was insoluble to any solvents, and showed no absorption band attributable OH group in its IR spectrum. Isomeric dithienylethenes attached to m‐ and p‐phenol moieties did not form films under the same oxidation conditions, but instead formed films by copolymerization with 4,4′‐dihydroxyphenyl ether. Although the homopolymer film and copolymer films showed reversible photochromic reactions by alternate irradiation with UV and visible light, the coloration was not remarkable. Polymerization of closed‐ring isomers of the dithienylethenes did not give pre‐polymers and instead decomposed, while the closed‐ring isomer of a bisbenzothienylethene derivative attached to the o‐phenol moiety (1,2‐bis[2‐methyl‐6‐(o‐hydroxyphenyl)‐1‐benzothiophen‐3‐yl]hexafluorocyclopentene) formed a polymer film by the same procedure. This polymer film showed a remarkable photochromic reaction, indicating the photo‐reactive conformation was fixed in polymer matrix, and X‐ray diffraction measurements show that the film is in the amorphous phase. The photochromic reaction can also be monitored by IR spectroscopy, making it applicable for non‐destructive read‐out recording films.  相似文献   

13.
The fabrication of bio‐hybrid functional films is demonstrated by applying a materials assembly technique. Based on the hierarchical structures of silk fibroin materials, functional molecular/materials, i.e., quantum dots (QDs), can be fixed to amino acid groups in silk fibroin films. It follows that white‐light‐emitting QD silk hybrid films are obtained by hydrogen bond molecular recognition to the –COO groups functionalized to blue luminescent ZnSe (5.2 nm) and yellow luminescent CdTe (4.1 nm) QDs in a molar ratio of 30:1 of ZnSe to CdTe QDs. Simultaneously, a systematic blue shift in the emission peak is observed from the QD solution to QDs silk fibroin films. The significant blue shift hints the appearance of the strong interaction between QDs and silk fibroins, which causes strong white‐light‐emitting uniform silk films. The molecular recognized interactions are confirmed by high resolution transmission electron microscopy, field scanning electron microscope, and attenuated total internal reflectance Fourier transform infrared spectroscopy. The QD silk films show unique advantages, including simple preparation, tunable white‐light emission, easy manipulation, and low fabrication costs, which make it a promising candidate for multicomponent optodevices.  相似文献   

14.
We have developed a photochemically controlled photonic‐crystal material by covalently attaching spiropyran derivatives to polymerized crystalline colloidal arrays (PCCAs). These PCCAs consist of colloidal particles that self‐assemble into crystalline colloidal arrays (CCAs), which are embedded in crosslinked hydrogels. Photoresponsive PCCAs were made two ways: 1) by functionalizing the hydrogel network with spiropyran derivatives, and 2) by functionalizing the colloidal particles with spiropyran derivatives. These materials can diffract light in the UV, visible, or near‐IR spectral regions. The diffraction of the PCCAs is red‐shifted by exciting the spiropyran with UV light. Alternatively, the diffraction is blue‐shifted by exciting the spiropyran with visible irradiation. Thus, this material acts as a memory storage material where information is recorded by illuminating the PCCA and information is read out by measuring the photonic‐crystal diffraction wavelength. UV excitation forms the open spiropyran form while visible excitation forms the closed spiropyran form. The diffraction shifts result from changes in the free energy of mixing of the PCCA system as the spiropyran is photoexcited to its different stable forms.  相似文献   

15.
A strategy by encapsulating organic dyes into the pores of a luminescent metal‐organic framework (MOF) is developed to achieve white‐light‐emitting phosphor. Both the red‐light emitting dye 4‐(p‐dimethylaminostyryl)‐1‐methylpyridinium ( DSM ) and the green‐light emitting dye acriflavine ( AF ) are encapsulated into a blue‐emitting anionic MOF ZJU‐28 through an ion‐exchange process to yield the MOF?dye composite ZJU‐28?DSM/AF . The emission color of the obtained composite can be easily modulated by simply adjusting the amount and component of dyes. With careful adjustment of the relative concentration of the dyes DSM and AF , the resulting ZJU‐28?DSM/AF (0.02 wt% DSM , 0.06 wt% AF ) exhibits a broadband white emission with ideal CIE coordinates of (0.34, 0.32), high color‐rendering index value of 91, and moderate correlated color temperature value of 5327 K. Such a strategy can be easily expanded to other luminescent MOFs and dyes, thus opening a new perspective for the development of white light emitting materials.  相似文献   

16.
White‐color light emitters from single organic molecule without heavy metals are valuable for practical applications in organic light‐emitting devices. In this study, carbazole (Cz)–dibenzofuran (DBF) donor–acceptor dyads are designed for white‐color light emitters. Originally, these molecules show photoluminescence (PL) in near ultraviolet region. However, upon successive ultraviolet (UV) irradiation, white‐color PL appears, comprising dual‐color phosphorescence from the amorphous and crystalline state of the dyad. A continuous UV irradiation makes the twisting angle between the Cz and DBF planes flatten through the triplet‐excited state, which proceeds crystallization. Thermal annealing and UV irradiation can switch the blue‐ and white‐color phosphorescences from the dyad. Furthermore, charge injection generates white‐color electroluminescence. The materials with PL color modulation ability by UV‐light irradiation and heating can be applicable as light‐ and thermo‐sensors.  相似文献   

17.
All‐optical deformation and recovery of complex topographical features is demonstrated within elastic sheets composed of main‐chain type azobenzene‐functionalized liquid crystalline elastomers (azo‐LCEs). The azo‐LCEs are synthesized via an orthogonal, two‐step reaction between commercially available LC monomers and n‐butylamine. By employing surface alignment, the local orientation of the nematic director is spatially complex (“blueprinted”). Exposing the blueprinted LCE films to light as an actinic stimulus generates a photomechanical response which yields reversible shape changes between 2D and 3D shapes. The deformation of azo‐LCEs strongly depends on the azobenzene concentration as well as the network structure (i.e., crosslink density). Blueprinting complex director profiles within azo‐LCEs yield reconfigurable elastic sheets that can be addressed both remotely and selectively which may have benefit in a variety of applications in aerospace, medicine, and optics.  相似文献   

18.
This study investigated the photochromic properties and characterization of acetyl‐substituted diarylethene (DAMBTF6)‐doped fluoroacrylates media for holographic storage. For the rewritable holographic recording media, we prepared photochromic polymer films using an acrylate matrix by simple photocuring methods. Switching light sources from a visible (532 nm) to an ultraviolet (365 nm) produced transparent films that changed from pale yellow to red. Holographic recording was performed on the photochromic films by two interfering collimated plane wave beams. Excitation with a visible or ultraviolet light completely erased the records, and the film was rewritable either by 532 nm laser or by 325 nm laser within 2 seconds. Images were recorded onto a pixelated spatial light modulator with rectangular pixel apertures and reconstructed on the photochromic films to show recovery of the original images with high resolution.  相似文献   

19.
Light‐driven swimming particles hold great potential in wide applications ranging from next‐generation drug delivery to versatile microrobotic devices. It is desired that the self‐propelled microparticles should swim not only autonomously but also directionally to achieve their goals in their potential applications. This paper presents the first example of fully organic colloidal particles of a spiropyran‐terminated hyperbranched polymer that can be driven and meanwhile steered by a UV light source, swimming straight towards the UV source. The mean‐square velocities of the photochromic suspension particles are about 20 μm s?1, and increase to about 54 μm s?1 with the addition of NaCl of 0.5%. The phototactic propulsion is supposed to be originated from the UV irradiation‐induced interfacial tension gradient on the surface of the colloidal particles. This finding allows for the design of new microengines for next‐generation drug delivery systems, microrobotic devices, and self‐adaptive photocatalysts, etc.  相似文献   

20.
Solid‐state white light‐emitting electrochemical cells (LECs) exhibit the following advantages: simple device structures, low operation voltage, and compatibility with inert metal electrodes. LECs have been studied extensively since the first demonstration of white LECs in 1997, due to their potential application in solid‐state lighting. This review provides an overview of recent developments in white LECs, specifically three major aspects thereof, namely, host–guest white LECs, nondoped white LECs, and device engineering of white LECs. Host–guest strategy is widely used in white LECs. Host materials are classified into ionic transition metal complexes, conjugated polymers, and small molecules. Nondoped white LECs are based on intra‐ or intermolecular interactions of emissive and multichromophore materials. New device engineering techniques, such as modifying carrier balance, color downconversion, optical filtering based on microcavity effect and localized surface plasmon resonance, light extraction enhancement, adjusting correlated color temperature of the output electroluminescence spectrum, tandem and/or hybrid devices combining LECs with organic light‐emitting diodes, and quantum‐dot light‐emitting diodes improve the device performance of white LECs by ways other than material‐oriented approaches. Considering the results of the reviewed studies, white LECs have a bright outlook.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号