共查询到20条相似文献,搜索用时 15 毫秒
1.
采用喷雾分散-油柱成型制备方法,以硅溶胶为硅源,制备不同含量SiO2掺杂改性的微球形氧化铝载体,研究SiO2含量对氧化铝载体结构及以其为载体的负载型催化剂性能的影响。研究表明,通过掺杂SiO2有效改善了氧化铝微球的热稳定性,且氧化铝载体的孔容、比表面积及酸中心数量均随SiO2含量的增加而增加,孔径随SiO2含量的增加而减小。Pd/SiO2-Al2O3催化剂结构表征及流化床蒽醌加氢性能评价结果表明,掺杂SiO2质量分数6%时,Pd/SiO2-Al2O3催化剂氢化效率大于12.5g·L^-1,选择性大于98.3%。 相似文献
2.
Zhanggen Huang Zhenyu Liu Xianlong Zhang Qingya Liu 《Applied catalysis. B, Environmental》2006,63(3-4):260-265
The inhibition effect of H2O on V2O5/AC catalyst for NO reduction with NH3 is studied at temperatures up to 250 °C through TPD, elemental analyses, temperature-programmed surface reaction (TPSR) and FT-IR analyses. The results show that H2O does not reduce NO and NH3 adsorption on V2O5/AC catalyst surface, but promotes NH3 adsorption due to increases in Brønsted acid sites. Many kinds of NH3 forms present on the catalyst surface, but only NH4+ on Brønsted acid sites and a small portion of NH3 on Lewis acid sites are reactive with NO at 250 °C or below, and most of the NH3 on Lewis acid sites does not react with NO, regardless the presence of H2O in the feed gas. H2O inhibits the SCR reaction between the NH3 on the Lewis acid sites and NO, and the inhibition effect increases with increasing H2O content. The inhibition effect is reversible and H2O does not poison the V2O5/AC catalyst. 相似文献
3.
The kinetics of CO and H2 oxidation over a CuO-CeO2 catalyst were simultaneously investigated under reaction conditions of preferential CO oxidation (PROX) in hydrogen-rich mixtures with CO2 and H2O. An integral packed-bed tubular reactor was used to produce kinetic data for power-law kinetics for both CO and H2 oxidations. The experimental results showed that the CO oxidation rate was essentially independent of H2 and O2 concentrations, while the H2 oxidation rate was practically independent of CO and O2 concentrations. In the CO oxidation, the reaction orders were 0.91, −0.37 and −0.62 with respect to the partial pressure of CO, CO2 and H2O, respectively. In the H2 oxidation, the orders were 1.0, −0.48 and −0.69 with respect to the partial pressure of H2, CO2 and H2O, respectively. The activation energies of the CO oxidation and the H2 oxidation were 94.4 and 142 kJ/mol, respectively. The rate expressions of both oxidations were able to predict the performance of the PROX reactor with accuracy. The independence between the CO and the H2 oxidation suggested different sites for CO and H2 adsorption on the CuO-CeO2 catalyst. Based on the results, we proposed a new reaction model for the preferential CO oxidation. The model assumes that CO adsorbs selectively on the Cu+ sites; H2 dissociates and adsorbs on the Cu0 sites; the adsorbed species migrates to the interface between the copper components and the ceria support, and reacts there with the oxygen supplied by the ceria support; and the oxygen deficiency on the support is replenished by the oxygen in the reaction mixture. 相似文献
4.
The kinetics of citral hydrogenation in ethanol over an Ni/Al2O3 catalyst was studied in a slurry reactor operating at atmospheric pressure and at a temperature range of 60–77°C. Citronellal was the primary reaction product, whereas the amounts of unsaturated alcohols were very minor. Citronellol was the dominating product, generated mainly through the hydrogenation of the carbonyl group of citronellal. Based on the experimental data, a kinetic model was developed for hydrogenation. The model comprises competitive and rapid adsorption steps as well as rate-determining hydrogenation steps. The mass transfer limitation of hydrogen was included in the mathematical model. The kinetic parameters and the mass transfer parameter of hydrogen were estimated from the experimental data. A comparison of the model predictions with the experimental data revealed that the proposed kinetic approach gave a satisfactory reproduction of the data. 相似文献
5.
采用吸附-沉淀法制备负载Ru质量分数为1.0%的Ru/Al_2O_3催化剂,以马来酸二甲酯催化加氢合成丁二酸二甲酯为探针反应,详细考察预处理条件对Ru/Al_2O_3催化剂加氢性能的影响,并对其进行XRD、TEM和H2-TPR表征。结果表明,焙烧温度越高,催化剂催化活性越低;直接还原活化所得催化剂活性高于空气中焙烧后还原活化所得催化剂。以甲醇为溶剂,在70℃和1.0 MPa条件下,直接还原活化所得Ru/Al_2O_3催化剂上马来酸二甲酯转化率达100%,丁二酸二甲酯选择性约100%。相同时间内,空气焙烧后还原活化所得Ru/Al_2O_3催化剂上马来酸二甲酯转化率接近25%,继续延长反应时间,马来酸二甲酯转化率几乎不变。经高温焙烧还原后,活性组分Ru烧结;直接还原活化后,活性组分Ru高度分散。 相似文献
6.
7.
Caroline Cellier Donatienne Le Clef Ccilia Mateos-Pedrero Patricio Ruiz 《Catalysis Today》2005,106(1-4):47-51
The influence of the addition of 5 vol.% of carbon monoxide, hydrogen, carbon dioxide or water to the feed of partial oxidation of methane was investigated over Ni/γ-Al2O3 and Rh/γ-Al2O3 catalysts. In addition to catalytic tests, thermodynamic calculations were performed to predict the effect of these gas co-feeds. Compared to the thermodynamic trends, differences in the influence of the co-feeding on catalytic performances were observed between both catalysts. Co-feeding of CO, H2, CO2 or H2O can modify the oxidation state and dispersion of the metal component of the catalysts during reaction, and as a consequence, their performances. Changes in catalysts can be due to dynamic processes occurring during reaction. It is suggested to take these processes into account in a more complex kinetic equation for the reactions involved. 相似文献
8.
Marc J. Ledoux Cuong Pham-Huu Nicolas Keller Jean-B. Nougayr de Sabine Savin-Poncet Jacques Bousquet 《Catalysis Today》2000,61(1-4):157-163
Very high activity and selectivity could be achieved for the direct oxidation of H2S into elemental sulfur at low reaction temperature (40–60°C), on nickel sulfide supported SiC catalyst. The heterogeneous nature of the support surface (hydrophilic and hydrophobic areas) could explain the important role played by water to maintain a high and stable H2S conversion level. The formation of a very active superficial nickel oxysulfide phase was proposed in order to explain the activation period necessary at reaction temperatures <60°C. Total selectivity for sulfur was attributed to the very low reaction temperature and the absence of any microporosity in the support. 相似文献
9.
Among various Cu/ZnO/ZrO2 catalysts with the Cu/Zn ratio of 3/7, the one with 15 wt.% of ZrO2 obtains the best activity for methanol synthesis by hydrogenation of CO. The TPR, TPO and XPS analyses reveal that a new copper oxide phase is formed in the calcined Cu/ZnO/ZrO2 catalysts by the dissolution of zirconium ions in copper oxide. In addition, the Cu/ZnO/ZrO2 catalyst with 15 wt.% of ZrO2 turns out to contain the largest amount of the new copper oxide phase. When the Cu/ZnO/ZrO2 catalysts is reduced, the Cu2+ species present in the ZrO2 lattice is transformed to Cu+ species. This leads to the speculation that the addition of ZrO2 to Cu/ZnO catalysts gives rise to the formation of Cu+ species, which is related to the methanol synthesis activity of Cu/ZnO/ZrO2 catalyst in addition to Cu metal particles. Consequently, the ratio of Cu+/Cu0 is an important factor for the specific activity of Cu/ZnO/ZrO2 catalyst for methanol synthesis. 相似文献
10.
针对甲基吡啶氧化脱甲基反应,以TiO_2为载体经浸渍法制备Ag-Fe_2O_3-V_2O_5/TiO_2催化剂,结合结构表征和催化剂性能评价,考察制备条件对其催化甲基吡啶氧化脱甲基性能的影响。结果表明,通过Fe_2O_3改性可以提高Ag-V_2O_5/TiO_2催化剂对3-甲基吡啶氧化脱甲基化反应的催化性能,其作用主要是抑制V_2O_5团聚,促进V物种的分散。同时,锐钛矿相TiO_2载体表面B酸中心有利于催化3-甲基吡啶脱甲基,提高产物吡啶选择性。经实验优化,Ag-Fe_2O_3-V_2O_5/TiO_2催化剂适宜制备条件为:焙烧温度450℃、焙烧时间4 h、V_2O_5和Ag的负载质量分数分别为15%和1.5%、Fe与V物质的量比1∶2。在优化条件下,吡啶收率与选择性最高可达到62.97%和78.75%。 相似文献
11.
12.
采用浸渍法制备了稀土镧和铈改性的CuNi/Al2O3催化剂,研究了稀土负载量对催化剂活性和选择性的影响,并研究了催化剂的还原性能。结果表明:La和Ce的存在均降低了活性相CuO和NiO的还原温度,使改性催化剂具有更高的催化活性,但催化剂上乙烯的选择性则是Ce改性催化剂高于La改性催化剂,NCeO2含量为l%时,CeCuNi/Al2O3催化剂上乙炔转化率达到98%,乙烯选择性和收率则分别达到84%和82.3%,比未改性的CuNi/Al2O3催化剂上乙烯收率高16.4%,显示出CeO2改性CuNi/Al2O3催化剂的优异性能。 相似文献
13.
CO_2加氢直接合成汽油不仅有利于CO_2减排,还可减轻人们对化石能源的依赖。汽油馏分烃产物组成是决定汽油燃料品质的重要因素,其调控是该过程具有挑战性的研究热点。研究NaFe_3O_4/ZSM-5催化剂中分子筛的金属(La,Ga,Zn,Cu,Co)改性对CO_2加氢产物中汽油馏分烃组成的影响,结果表明,与其他金属相比,Cu改性ZSM-5分子筛组分可在保持较高汽油收率前提下,明显提高汽油产物中异构烷烃选择性。优化改性分子筛中Cu质量分数8%时,汽油馏分烃产物中异构烷烃含量最高。当Na-Fe_3O_4和Cu-ZSM-5采用分层填装方式时,汽油馏分烃产物中异构烷烃含量达50.5%,组成调控后富含异构烷烃汽油产品更符合汽油品质升级趋势需求。 相似文献
14.
15.
Yi-Fan Han Fengxi Chen Kanaparthi Ramesh Ziyi Zhong Effendi Widjaja Luwei Chen 《Applied catalysis. B, Environmental》2007,76(3-4):227-234
A new heterogeneous Fenton-like system consisting of nano-composite Mn3O4/SBA-15 catalyst has been developed for the complete oxidation of low concentration ethanol (100 ppm) by H2O2 in aqueous solution. A novel preparation method has been developed to synthesize nanoparticles of Mn3O4 by thermolysis of manganese (II) acetylacetonate on SBA-15. Mn3O4/SBA-15 was characterized by various techniques like TEM, XRD, Raman spectroscopy and N2 adsorption isotherms. TEM images demonstrate that Mn3O4 nanocrystals located mainly inside the SBA-15 pores. The reaction rate for ethanol oxidation can be strongly affected by several factors, including reaction temperature, pH value, catalyst/solution ratio and concentration of ethanol. A plausible reaction mechanism has been proposed in order to explain the kinetic data. The rate for the reaction is supposed to associate with the concentration of intermediates (radicals: OH, O2− and HO2) that are derived from the decomposition of H2O2 during reaction. The complete oxidation of ethanol can be remarkably improved only under the circumstances: (i) the intermediates are stabilized, such as stronger acidic conditions and high temperature or (ii) scavenging those radicals is reduced, such as less amount of catalyst and high concentration of reactant. Nevertheless, the reactivity of the presented catalytic system is still lower comparing to the conventional homogenous Fenton process, Fe2+/H2O2. A possible reason is that the concentration of intermediates in the latter is relatively high. 相似文献
16.
Motonobu Kobayashi Ryoji Kuma Sinyuki Masaki Noboru Sugishima 《Applied catalysis. B, Environmental》2005,60(3-4):173-179
TiO2-SiO2 with various compositions prepared by the coprecipitation method and vanadia loaded on TiO2-SiO2 were investigated with respect to their physico-chemical characteristics and catalytic behavior in SCR of NO by NH3 and in the undesired oxidation of SO2 to SO3, using BET, XRD, XPS, NH3-TPD, acidity measurement by the titration method and activity test. TiO2-SiO2, compared with pure TiO2, exhibits a remarkably stronger acidity, a higher BET surface area, a lower crystallinity of anatase titania and results in allowing a good thermal stability and a higher vanadia dispersion on the support up to high loadings of 15 wt% V2O5. The SCR activity and N2 selectivity are found to be more excellent over vanadia loaded on TiO2-SiO2 with 10–20 mol% of SiO2 than over that on pure TiO2, and this is considered to be associated with highly dispersed vanadia on the supports and large amounts of NH3 adsorbed on the catalysts. With increasing SiO2 content, the remarkable activity decrease in the oxidation of SO2 to SO3, favorable for industrial SCR catalysts, was also observed, strongly depending on the existence of vanadium species of the oxidation state close to V4+ on TiO2-SiO2, while V5+ exists on TiO2, according to XPS. It is concluded that vanadia loaded on Ti-rich TiO2-SiO2 with low SiO2 content is suitable as SCR catalysts for sulfur-containing exhaust gases due to showing not only the excellent de-NOx activity but also the low SO2 oxidation performance. 相似文献
17.
Jamil Toyir Masahiro Saito Isamu Yamauchi Shengcheng Luo Jingang Wu Isao Takahara Masami Takeuchi 《Catalysis Today》1998,45(1-4):245-250
Catalytic hydrogenation of CO2 into methanol has been investigated over Raney Cu-based catalysts. The Raney catalysts leached in NaOH/ZnO solutions showed high activities and selectivities for methanol synthesis. The deposition of Zn on the surface of Cu particles increased the surface area and the specific activity of Raney Cu–M. Raney Cu–Zr developed was significantly more active than a commercial catalyst. 相似文献
18.
Catalytic wet oxidation of H2S to sulfur on Fe/MgO catalyst 总被引:1,自引:0,他引:1
Kwang-Deog Jung Oh-Shim Joo Seong-Hoon Cho Sung-Hwan Han 《Applied Catalysis A: General》2003,240(1-2):235-241
The room temperature wet catalytic oxidation was conducted in a batch reactor with Fe/MgO catalyst. Fe/MgO catalyst was prepared by the dissolution–precipitation method. XRD and temperature-programmed reductions (TPR) indicate that Fe oxide in the Fe/MgO is finely dispersed in the MgO support. The high H2S removal capacities of Fe/MgO can be explained by the finely dispersed iron oxide MgO. The H2S removal capacities of Fe/MgO are dependent on oxygen partial pressure (1.0 g H2S/gcat in air and 2.6 g H2S/gcat in oxygen). The valence state analysis of Fe/MgO catalyst suggests that the H2S oxidation on Fe/MgO can occur by a redox couple reaction, reducing Fe3+ into Fe2+ by H2S and oxidizing Fe2+ to Fe3+ by O2. 相似文献
19.
The activity of a carbon supported PtWO3 (PtWO3/C) catalyst in the CO oxidation and CO2 reduction reactions was evaluated in sulfuric acid solution at room temperature.Cyclic voltammetry combined with on-line mass spectrometry shows that the oxidation of both saturated CO adlayer and dissolved CO on PtWO3/C material commences at rather low potentials, ca. 0.18 and 0.12 V vs. RHE, respectively. However, the low-potential process seems to involve only a minor fraction of the CO adlayer, the major part of the adsorbed CO layer being oxidised at the potentials as high as those for pure Pt catalysts—ca. 0.7 V vs. RHE. PtWO3/C material was found to reversibly de-activate upon a prolonged exposure to the CO-saturated solution due to the inhibition of the hydrogen tungsten bronze formation.The reduction of CO2 on PtWO3/C leads to the formation of an adsorbate - presumably CO - on the Pt sites of the catalyst. Although the rate of the adsorbate build-up on PtWO3/C at 0.1 V is lower than that on pure Pt/C, our results indicate that upon a prolonged exposure of the PtWO3/C electrode to a CO2-saturated solution a complete poisoning of the Pt sites with the adsorbate is likely to occur at room temperature. 相似文献
20.
Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia 总被引:1,自引:0,他引:1
L. Lietti J. L. Alemany P. Forzatti G. Busca G. Ramis E. Giamello F. Bregani 《Catalysis Today》1996,29(1-4):143-148
The physico-chemical characteristics and the reactivity of sub-monolayer V2O5-WO3/TiO2 deNOx catalysts is investigated in this work by EPR, FT-IR and reactivity tests under transient conditions. EPR indicates that tetravalent vanadium ions both in magnetically isolated form and in clustered, magnetically interacting form are present over the TiO2 surface. The presence of tungsten oxide stabilizes the surface VIV and modifies the redox properties of V2O5/TiO2 samples. Ammonia adsorbs on the catalysts surface in the form of molecularly coordinated species and of ammonium ions. Upon heating, activation of ammonia via an amide species is apparent. V2O5-WO3/TiO2 catalysts exhibits higher activity than the binary V2O5/TiO2 and WO3/TiO2 reference sample. This is related to both higher redox properties and higher surface acidity of the ternary catalysts. Results suggest that the catalyst redox properties control the reactivity of the samples at low temperatures whereas the surface acidity plays an important role in the adsorption and activation of ammonia at high temperatures. 相似文献