首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Improvement of the low-cost transition metal electrocatalyst used in sluggish oxygen evolution reaction is a significant but challenging problem. In this study, ultrafine Fe-modulated Ni nanoparticles embedded in a porous Ni-doped carbon matrix were produced by the pyrolysis of zirconium metal–organic–frameworks, in which 2,2′-bipyridine-5,5′-dicarboxylate operating as a ligand can coordinate with Ni2+ and Fe3+. This strategy allows formation of Fe-modulated Ni nanoparticles with a uniform dimension of about 2 nm which can be ascribed to the spatial blocking effect of ZrO2. This unique catalyst displays an efficient oxygen evolution reaction electrocatalytic activity with a low overpotential of 372 mV at 10 mA·cm–2 and a small Tafel slope of 84.4 mV·dec–1 in alkaline media. More importantly, it shows superior durability and structural stability after 43 h in a chronoamperometry test. Meanwhile, it shows excellent cycling stability during 4000 cyclic voltammetry cycles. This research offers a new insight into the construction of uniform nanoscale transition metals and their alloys as highly efficient and durable electrocatalysts.  相似文献   

2.
3.
王杰  张因  郭健健  赵丽丽  赵永祥 《化工学报》2018,69(8):3452-3459
分别以ZrO2、SiO2及ZrO2-SiO2复合氧化物为载体,采用等体积浸渍法制备了Ni含量为10%(质量分数)的催化剂,考察了其催化乙酰丙酸液相加氢性能。采用N2-物理吸附、NH3-TPD、H2-TPR、XRD、TEM等表征手段对催化剂进行了表征。研究结果表明,在所制备的催化剂上,乙酰丙酸先经C=O加氢生成4-羟基戊酸,后者快速脱水酯化为γ-戊内酯。Ni/ZrO2-SiO2催化剂较Ni/ZrO2与Ni/SiO2催化剂具有高的金属分散度和丰富的表面酸性中心,表现出高的C=O加氢活性以及优异的乙酰丙酸加氢合成γ-戊内酯性能。在反应温度为200℃,氢气压力4 MPa的反应条件下,乙酰丙酸的转化率达到100%,γ-戊内酯的选择性大于99.9%。  相似文献   

4.
采用固定床反应器研究了Ni/Al2O3上CS2对裂解汽油原料油中主要化合物芳烃、单烯烃和共轭烯烃加氢活性的影响,其对加氢抑制的顺序为:芳烃单烯烃共轭烯烃。XRD、XPS和IR表征分析表明,Ni/Al2O3催化剂失活的可能原因是CS2吸附在活性相表面,部分CS2碳硫键断裂发生氢解反应产生H2S和CH4,H2S与镍活性中心作用形成镍硫化合物。原料油中部分CS2吸附在催化剂表面,催化剂对共轭烯烃加氢也失去活性。  相似文献   

5.
Porous carbon-encapsulated Ni and Ni–Sn intermetallic compound catalysts were prepared by the one-pot extended Stöber method followed by carbonization and tested for in-situ hydrothermal deoxygenation of methyl palmitate with methanol as the hydrogen donor. During the catalyst preparation, Sn doping reduces the size of carbon spheres, and the formation of Ni–Sn intermetallic compounds restrain the graphitization, contributing to larger pore volume and pore diameter. Consequently, a more facile mass transfer occurs in carbon-encapsulated Ni–Sn intermetallic compound catalysts than in carbon-encapsulated Ni catalysts. During the in-situ hydrothermal deoxygenation, the synergism between Ni and Sn favors palmitic acid hydrogenation to a highly reactive hexadecanal that easily either decarbonylate to n-pentadecane or is hydrogenated to hexadecanol. At high reaction temperature, hexadecanol undergoes dehydrogenation–decarbonylation, generating n-pentadecane. Also, the C–C bond hydrolysis and methanation are suppressed on Ni–Sn intermetallic compounds, favorable for increasing the carbon yield and reducing the H2 consumption. The n-pentadecane and n-hexadecane yields reached 88.1% and 92.8% on carbon-encapsulated Ni3Sn2 intermetallic compound at 330 °C. After washing and H2 reduction, the carbon-encapsulated Ni3Sn2 intermetallic compound remains stable during three recycling cycles. This is ascribed to the carbon confinement that effectively suppresses the sintering and loss of metal particles under harsh hydrothermal conditions.  相似文献   

6.
通过改变甲醇热时间制备了一系列不同晶粒尺寸的四方相 ZrO2,采用过体积浸渍法制备了Ni 含量(质量分数)为10%的Ni/ZrO2催化剂,并考察了其催化顺酐液相加氢性能。采用氮气吸附-脱附(BET)、X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)、原位红外光谱(in situ FTIR)等手段对催化剂进行了表征。研究结果表明,分散性好、晶粒尺寸小的Ni物种有利于C=C键加氢生成丁二酸酐;而金属-载体强相互作用的形成则有利于C=O加氢生成 γ-丁内酯。当甲醇热时间为2 h时,制备的Ni/ZrO2催化剂的C=O加氢活性最高,在反应温度为210℃,反应压力为5 MPa,反应时间为3 h时,其顺酐转化率达100%,γ-丁内酯选择性为44.7%。  相似文献   

7.
为获得高分散的负载型Ni基催化剂,提高催化剂加氢性能,采用共浸法制备了以炭改性Al2O3为载体(CCA)的Ni基催化剂,采用BET、XRD和H2-TPD对催化剂进行表征,以顺酐液相加氢为探针反应研究催化剂加氢性能。结果表明,通过共浸法同时引入活性组分Ni与炭助剂,经一次焙烧后即可获得活性组分Ni高度分散的负载Ni/CCA催化剂,在顺酐加氢反应中表现出高的γ-丁内酯选择性。  相似文献   

8.
Hydrogenation of 4‐chloro‐2‐nitrophenol (CNP) was carried out at moderate hydrogen pressures, 7–28 atm, and temperatures in the range 298–313 K using Pt/carbon and Pd/γ‐Al2O3 as catalysts in a stirred pressure reactor. Hydrogenation of CNP under the above conditions gave 4‐chloro‐2‐aminophenol (CAP). Dechlorination to form 2‐aminophenol and 2‐nitrophenol is observed when hydrogenation of CNP is carried out above 338 K, particularly with Pd/γ‐Al2O3 catalyst. Among the catalysts tested, 1%Pt/C was found to be an effective catalyst for the hydrogenation of CNP to form CAP, exclusively. To confirm the absence of gas–liquid mass transfer effects on the reaction, the effect of stirring speed (200–1000 rpm) and catalyst loading (0.02–0.16 g) on the initial reaction rate at maximum temperature 310 K and substrate concentration (0.25 mole) were thoroughly studied. The kinetics of hydrogenation of CNP carried out using 1%Pt/C indicated that the initial rates of hydrogenation had first order dependence with respect to substrate, catalyst and hydrogen pressure in the range of concentrations varied. From the Arrhenius plot of ln rate vs 1000/T, an apparent activation energy of 22 kJ mol?1 was estimated. © 2001 Society of Chemical Industry  相似文献   

9.
The poisoning of Pd–carbon (4·1% Pd) catalysts by thiophene, dichloroethane, mercuric chloride and lead, zinc and mercuric acetates at different concentrations (0–5000 g m−3) in the liquid phase hydrogenation of o-nitrophenol to o-aminophenol (at 308 K and H2 pressure of 1508 kPa) in a three-phase stirred slurry reactor has been investigated. The hydrogenation activity of the catalyst is drastically reduced due to the presence of these poisons in the reaction mixture, even at a very low concentration of poison (20 g m−3). Among the poisons, mercuric acetate was found to be the most potent. © 1998 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号