首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
方海  赵扬  高媛  杨旭 《计算机工程与科学》2022,44(11):1951-1958
针对高低轨卫星网络协同边缘计算的卸载决策问题,提出了一种考虑任务依赖的联合计算资源、无线资源分配与任务调度的卫星网络边缘计算卸载决策算法。首先,将任务卸载问题建模为最小化任务延迟和能量消耗的联合优化问题;然后,将能源消耗和时延引入子任务优先级定义中,基于动态优先级进行启发式卸载策略搜索。该算法保证了子任务之间的依赖性并同时考虑了无线资源分配。仿真结果表明,与已有研究相比,该算法能缩短高低轨卫星协同计算的任务执行延迟,且能够降低低轨卫星功耗。  相似文献   

2.
车联网边缘计算是实现车联网系统低时延和高可靠性的关键技术,但现有方法普遍存在场景趋同和系统建模局限的问题,同时包含复杂的训练过程并面临维灾风险。通过结合云计算技术,提出一种基于多智能体强化学习的边云协同卸载方案。依据随机几何理论计算卸载节点覆盖概率,对车辆节点与卸载对象进行预配对。利用线性Q函数分解方法反映每个智能体多效用因子与任务决策间的映射关系,通过云端协同机制将智能体决策记录作为经验上传到云端,并在云端将训练更完备的神经网络反馈到边缘节点。仿真结果表明,该方案在功耗和延时方面性能优于单一固定边缘的计算策略,且算法复杂度较低,能够有效提升边云协同卸载能力,实现低时延、高可靠的任务卸载。  相似文献   

3.
孙伟峰  张渊櫆  江贺  秦一星 《软件学报》2023,34(9):4275-4293
多接入边缘计算(multi-access edge computing, MEC)中的计算卸载问题已经成为当前研究的热点之一.目前的计算卸载方案仅考虑云、边、端结构中的计算卸载问题,而未考虑到其公、私有云的属性.提出了一种新的计算卸载方案,所提方案考虑了边缘计算中公有云与私有云之间的关系,将公有云作为了私有云资源的补充,可以缓解由于私有云资源局限性带来的算力不足问题;并通过建立双层Stackelberg博弈来解决计算卸载问题.对公有云、私有云以及用户的策略和收益进行了分析,求出了各参与人的最优策略,证明了双层博弈的纳什均衡解的存在性及唯一性.仿真结果和分析也验证了基于双层Stackelberg博弈的计算卸载方案的可行性,且相较基于单层Stackelberg博弈的卸载方案更高效,更适合可扩展的边缘计算的环境.  相似文献   

4.
移动边缘计算(MEC)是当下最有效的增强移动设备计算能力的方法,吸引了广大学者进行研究。为提高移动边缘计算的无线蜂窝网络性能,提出了一种基于移动边缘计算的无线蜂窝网络计算卸载和干扰管理集成框架。在该集成框架中,MEC服务器综合基于所有用户设备(UE)估算的计算开销和由MEC服务器自身估算的卸载开销做出卸载决策。然后MEC服务器再使用图着色进行PRB分配。最后基于卸载决策和PRB分配结果将MEC服务器的计算资源分配给用户设备UE。对该集成框架的仿真结果展现了该集成框架在不同系统参数下的有效性。  相似文献   

5.
移动边缘计算(MEC)通过将算力下沉到网络边缘来降低计算时延和设备能耗。针对计算密集型和时延敏感型应用场景,提出了一种单多维动态种群策略的人工蜂群算法(OMABC)来实现计算任务的卸载。建立一个包含云服务器的边缘计算卸载模型,并构建一个以能耗为惩罚项的代价函数;将计算任务的卸载决策转化为人工蜂群算法对代价函数的寻优过程。通过仿真实验,在CEC 2017测试函数上验证了OMABC的有效性,并在边缘计算模型仿真中与本地卸载策略、随机卸载策略、基于粒子群算法(PSO)的卸载策略、基于人工蜂群算法(ABC)的卸载策略进行对比。实验结果表明,基于OMABC的边缘计算卸载策略能够有效降低MEC系统的时延及代价函数,提供更高效的服务。  相似文献   

6.
将移动边缘计算(Mobile edge computing, MEC)引入车载自组网形成车载边缘计算,从而使服务提供商直接利用MEC服务器在网络边缘服务用户,以提升用户体验质量和丰富用户满意度。随后,研究在车载边缘计算环境下车辆用户的计算卸载问题。针对此问题,提出相应的系统模型与使用讨价还价博弈方法以解决MEC服务器如何根据不同的任务要求与车辆信誉值分配自身的计算资源以执行不同的卸载任务。最后,通过实验仿真,验证了方案的有效性和可靠性。算资源以执行不同的卸载任务。最后,通过实验仿真,验证了方案的有效性和可靠性。  相似文献   

7.
针对能量受限的多用户移动边缘计算(MEC)系统存在恶意窃听节点的问题,提出一种联合无线能量传输(WPT)和MEC的安全部分计算卸载方案。该方法以系统接入点(AP)能耗最小化为优化目标,在计算延迟、安全卸载和能量捕获约束条件下,联合优化AP能量传输协方差矩阵、本地CPU频率、用户卸载比特数、用户卸载时间分配以及用户传输功率。针对AP能耗最小化问题为非凸问题,首先采用凸差分算法(DCA)将原始非凸问题转换为凸问题,然后采用拉格朗日对偶法以半封闭形式获得问题最优解。当计算任务数为5×105比特时,与本地计算和安全全部计算卸载方法相比,安全部分卸载方案的能量消耗分别降低了61.3%和84.4%;当窃听节点距离超过25 m时,安全部分卸载方案所消耗的能量远小于本地计算和安全全部计算卸载。仿真实验结果表明,在保证物理层安全卸载的情况下,所提方案能够有效降低AP能耗、提高系统性能增益。  相似文献   

8.
计算卸载技术作为移动边缘计算(Mobile Edge Computing,MEC)的关键技术,通过合理的卸载决策能有效解决终端设备计算能力弱、时延长和能耗高等问题。介绍了MEC的概念、参考架构、部署方案和典型应用场景;分别从卸载决策的目标、粗粒度、细粒度的卸载方式及MEC与端对端(Device-to-Device,D2D)技术协作下的卸载方式详细阐述了计算卸载技术研究现状,分析和总结了该领域已有研究成果;对该领域的未来研究方向进行了思考,并给出了该领域面临的一些问题和挑战。  相似文献   

9.
刘伟  黄宇成  杜薇  王伟 《软件学报》2020,31(6):1889-1908
云计算和移动互联网的不断融合,促进了移动云计算的产生和发展,但是其难以满足终端应用对带宽和延迟的需求.移动边缘计算在靠近用户的网络边缘提供计算和存储能力,通过计算卸载,将终端任务迁移至边缘服务器上面执行,能够有效降低应用延迟和节约终端能耗.然而,目前针对移动边缘环境任务卸载的主要工作大多考虑单个移动终端和边缘服务器资源无限的场景,这在实际应用中存在一定的局限性.因此,针对边缘服务器资源受限下的任务卸载问题,提出了一种面向多用户的串行任务动态卸载策略(multi-user serial task dynamic offloading strategy,简称MSTDOS).该策略以应用的完成时间和移动终端的能量消耗作为评价指标,遵循先来先服务的原则,采用化学反应优化算法求解,充分考虑多用户请求对服务器资源的竞争关系,动态调整选择策略,为应用做出近似最优的卸载决策.仿真结果表明,MSTDOS策略比已有算法能够取得更好的应用性能.  相似文献   

10.
移动边缘计算(mobile edge computing,MEC)是一种高效的技术,通过将计算密集型任务从移动设备卸载到边缘服务器,使终端用户实现高带宽、低时延的目标.移动边缘计算环境下的计算卸载在减轻用户负载和增强终端计算能力等方面发挥着重要作用.考虑了服务缓存,提出一种云-边-端协同的计算卸载框架,在该框架中引入D2D (device-to-device,D2D)通信和机会网络.基于建立的模型,将计算卸载决策问题转化为一个混合整数非线性规划问题,并对无线特性和移动用户之间的非合作博弈交互制定了一个迭代机制来共同确定计算卸载方案.对提出的计算卸载算法从理论上证明了多用户计算卸载博弈模型为严格势力场博弈(exact potential game,EPG),卸载决策可获得全网范围内的最优效益.考虑到服务器的计算资源、卸载任务数据量和任务延迟需求,提出对用户和MEC服务器之间最佳用户关联匹配算法.最后,模拟结果表明,卸载决策算法具有较快的收敛速度,并在能效方面优于其他基准算法.  相似文献   

11.
考虑了多个设备的移动边缘计算(mobile edge computing, MEC)与端对端(device-to-device, D2D)技术协作网络, 其中多个无线设备的最终输出作为另一个设备上某个子任务的输入. 为了最小化无线设备的能耗和任务完成时间的加权和, 研究了最优的资源分配(卸载发射功率和本地CPU频率)和任务卸载决策问题. 首先固定卸载决策, 推导出卸载发射功率和本地CPU频率的闭合表达式, 运用凸优化方法求出该问题的解. 然后基于一次爬升策略提出了一种低复杂度线性搜索算法, 该算法可以在线性时间内获得最佳卸载决策. 数值结果表明, 该策略的性能明显优于其他有代表性的基准测试.  相似文献   

12.
针对海洋通信网络能源不稳定、时延较长的问题,提出一种混合能量供应的边缘计算卸载方案。对于能量供应问题,移动边缘计算(MEC)服务器集成混合电源和混合接入点,混合电源利用可再生能源为MEC服务器供应能量,采用电力电网作为其补充能源,保证边缘计算系统的可靠运行,船舶用户通过混合接入点广播的射频(RF)信号收集能量。针对任务卸载优化问题,以能耗-时延权衡优化为目标,联合能量收集方法制定任务卸载比例、本地计算能力和发射功率的优化方案,最后利用降维优化算法,将目标函数简化为关于任务卸载比例的一维多约束问题,并利用改进的鲸鱼优化算法获得最优的执行总代价。利用边缘云模拟器EdgeCloudSim仿真的结果表明,所提方案较具有能量收集的资源分配方案和基本海上通信网络优化的方案执行成本分别降低了13.4%和9.6%。  相似文献   

13.
在5G移动边缘计算(MEC)的车联网场景中, 针对车辆任务卸载目标的选择问题, 设计了一种基于任务优先级的服务器选择方案. 综合考虑时间、能耗、成本等因素对卸载位置选择的影响, 提出了基于多重指标拍卖博弈的解决方法. 通过多重指标拍卖机制, 选择最优的MEC服务器为车辆提供任务卸载服务, 实现车辆与RSU协作的贝叶斯纳什均衡. 仿真结果表明, 该方案能在保障车辆任务卸载时间和能耗的约束条件下, 降低任务卸载的总费用, 满足多个性能指标.  相似文献   

14.
针对移动边缘计算(MEC)中用户任务处理时延与能耗过高的问题,提出了"云-边-端"三层MEC计算卸载结构下的资源分配与卸载决策联合优化策略.首先,考虑系统时延与能耗,将优化问题规划为系统总增益(任务处理时延与能耗相对减少的加权和)最大化问题;其次,为用户任务设置优先级,并根据任务数据量初始化卸载决策方案;然后,采用均衡...  相似文献   

15.
多接入边缘计算(multi-access edge computing,MEC)技术将计算和存储资源下沉到网络边缘,可大幅提高物联网(Internet of things,IoT)系统的计算能力和实时性。然而,MEC往往面临计算需求增长和能量受限的约束,高效的计算卸载及能耗优化机制是MEC技术中重要的研究领域。为保证计算效率的同时最大程度提升计算过程中的能效,提出了两级边缘节点(edge nodes,ENs)中继网络模型,并设计了一种计算资源及信道资源联合优化的最优能耗卸载策略算法(optimal energy consumption algorithm,OECA)。将MEC中的能效建模为0-1背包问题;以最小化系统总体能耗为目标,系统自适应地选择计算模式和分配无线信道资源;在Python环境下仿真验证了算法性能。仿真结果表明,相比于基于有向无环图的卸载策略算法(directed acyclic graph algorithm,DAGA),OECA可将网络容量提升18.3%,能耗缩减13.1%。  相似文献   

16.
移动边缘计算(Mobile Edge Computing,MEC)中的计算卸载技术通过将终端设备的计算任务卸载到网络边缘处,以解决云计算中心时延长、能耗大和负载高等问题。介绍了MEC的概念、目前主流的MEC网络架构和部署方案。从卸载决策方面对MEC环境下计算密集型应用的卸载技术进行了详细研究,从最小化时延、最小化能耗、权衡时延和能耗及最大化收益为优化目标的4种计算卸载方案进行了分析和对比,并总结出各自的关键研究点。通过分析5G环境下MEC卸载技术的发展趋势,介绍了支持5G的IIoT-MEC网络部署架构,在此基础上分析了基于深度强化学习的轻量级任务卸载策略和基于D2D协作的MEC卸载策略。总结和归纳了目前MEC中计算卸载技术所面临的卸载决策、干扰管理、移动性管理等方面的核心挑战。  相似文献   

17.
随着车联网(IoV)中车辆和智能应用数目的增加使计算密集型任务激增,传统架构难以满足用户需求。为解决车联网计算资源不足且分配不均匀、应用时延需求无法满足、任务能耗成本较高的问题,结合移动边缘计算(MEC)和软件定义网络(SDN),设计了一种从宏基站到MEC服务器到车辆的车联网架构中的高效任务卸载方案,并提出一种改进的低复杂度非支配排序遗传算法,优化任务卸载成本和MEC服务器的负载均衡率。实验仿真结果表明,相比于随机卸载,NO-MEC卸载,NO-I卸载,传统NSGA、NSGA-Ⅱ卸载,GA卸载,Q-learning卸载,DQN卸载方案,所提方案有着更低的卸载成本,更优的负载均衡率,得到近似最高的系统效用,能够给车联网中的车辆用户带来更优质的网络服务。  相似文献   

18.
近年来, AR/VR、在线游戏、4K/8K超高清视频等计算密集且时延敏感型应用不断涌现,而部分移动设备受自身硬件条件的限制,无法在时延要求内完成此类应用的计算,且运行此类应用会带来巨大的能耗,降低移动设备的续航能力.为了解决这一问题,本文提出了一种Wi-Fi网络多AP (access point)协作场景下边缘计算卸载和资源分配方案.首先,通过遗传算法确定用户的任务卸载决策.随后,利用匈牙利算法为进行任务卸载的用户分配通信资源.最后,根据任务处理时延限制,为进行任务卸载的用户分配边缘服务器计算资源,使其满足任务处理时延限制要求.仿真结果表明,所提出的任务卸载与资源分配方案能够在满足任务处理时延限制的前提下有效降低移动设备的能耗.  相似文献   

19.
针对移动边缘计算环境下,移动设备的计算、续航、存储能力的不足,导致其响应延迟、电池寿命降低等问题,设计了一种动态节能资源竞争计算卸载(DERCO)策略。该策略综合考虑了信道容量以及设备间的相互干扰等情况,以一种贪婪算法的思想,让所有边缘设备通过迭代竞争信道资源,节能效果最好的设备将获得卸载机会,再利用一次性卸载方法,根据实时的信道状况和卸载速率进行动态的细粒度子任务卸载决策。实验结果表明,该策略优于一种近似协同计算卸载方案,有效降低了设备的能耗与时延。  相似文献   

20.
车载边缘计算(Vehicular Edge Computing,VEC)是一种可实现车联网低时延和高可靠性的关键技术,用户将计算任务卸载到移动边缘计算(Mobile Edge Computing,MEC)服务器上,不仅可以解决车载终端计算能力不足的问题,而且可以减少能耗,降低车联网通信服务的时延。然而,高速公路场景下车辆移动性与边缘服务器静态部署的矛盾给计算卸载的可靠性带来了挑战。针对高速公路环境的特点,研究了临近车辆提供计算服务的可能性。通过联合MEC服务器和车辆的计算资源,设计并实现了一个基于深度强化学习的协同计算卸载方案,以实现在满足任务时延约束的前提下最小化所有任务时延的目标。仿真实验结果表明,相比于没有车辆协同的方案,所提方案可以有效降低时延和计算卸载失败率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号