首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In cooperative wireless networks, relay nodes are employed to improve the performance of the network in terms of throughput and reliability. However, the presence of malicious relay nodes in the network may severely degrade the performance of the system. When a relay node behaves maliciously, there exists a possibility that such a node refuses to cooperate when it is selected for cooperation or deliberately drops the received packets. Trust establishment is a mechanism to detect misbehaving nodes in a network. In this paper, we propose a trust establishment method for cooperative wireless networks by using Bayesian framework. In contrast with the previous schemes proposed in wireless networks, this approach takes the channel state information and the relay selection decisions into account to derive a pure trust value for each relay node. The proposed method can be applied to any cooperative system with a general relay selection policy whose decisions in each cooperative transmission are independent of the previous ones. Moreover, it does not impose additional communication overhead on the system as it uses the available information in relay selection procedure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A unidirectional ring network is considered. A node may transmit at most one packet per slot to its downstream neighbor. Potentially all nodes may transmit at the same slot. The achievable performance is studied and policies are proposed for both the evacuation mode and continual operation. In the evacuation mode each node has initially an amount of packets destined for every other node of the ring, and no more packets are generated later. It is shown that the furthest destination first (FDF) policy, that gives priority to the packet with the longest way to go at each node, minimizes the time until every packet reaches its destination. Furthermore it is shown that the closest destination first (CDF) policy, that gives priority to the packet with the shortest way to go at each node, minimizes the average packet delivery time. A formula for the optimal evacuation time is obtained. The continual operation of the ring is considered then where packets are generated according to some arrival process. For any arrival sample path, the PDF maximizes the fraction of the time at which the ring is empty. The performance analysis of individual origin-destination traffic streams under FDF is facilitated based on the following. For each traffic stream, a single server priority queue is identified such that the average sojourn time of the traffic stream in the ring is equal to the aggregate transmission time plus the queueing delay of the low priority stream in the queue. Formulas for the sojourn time are obtained for iid arrivals. The performance of CDF and FIFO in continual operation is studied by simulation. It turns out that the CDF, minimum delay policy for the evacuation, has the worst performance in continual operation  相似文献   

3.
Polar codes represent an emerging class of error-correcting codes with power to approach the capacity of the physically degraded relay channel and relevant coding schemes have been proposed in the literature. This paper aims to design new cooperative decode-and-forward (DF) polar coding schemes for half-duplex two-relay channel based on the Plotkin’s construction illustrating their performances gain. In these schemes, we consider the use of time-division process in transmission. The source node transmits its polar-coded information to both relays and the destination nodes during the first time slot. Each relay node receives the data from the source and processes it using the DF protocol. For the second transmission period, each relay first decodes the source signal then after reconstruction of the information reduction matrix based on the multilevel characteristics of polar codes, the extracted data at each relay are recoded using another polar code and transmitted to the destination. At destination node, the signals received from each relay and source nodes are processed by using multi-joint successive cancellation decoding for retrieving the original information bits. We demonstrate via simulation results that by carefully constructed polarisation matrix at each relay node, we can achieve the theoretical capacity in the half-duplex relay channel.  相似文献   

4.
An energy capture cooperative relay network was studied.Unlike traditional cooperative relay networks,the relay nodes generally did not have a fixed energy supply but could carry out energy capture.For this network,a natural question was how to determine whether the relay nodes perform energy capture or data forwarding,and how to select the relay node to assist the information transmission between the source node and the destination node.Based on this problem,a multi-relay node selection scheme was proposed,which select the operation according to the energy of the current time slot of the relay node.In each time slot,the relay node that meet the battery threshold requirements was selected to assist in transmission.The Markov chain was used to model the charging and discharging process of the relay node battery,and the probability of interruption and throughput of the wireless network was obtained.And the value of the battery threshold when the throughput was maximized,that is,when the probability of network breakage was minimum was solved.Finally,the advantages of this scheme were verified by numerical experiments.  相似文献   

5.
In this paper, a low-complexity cooperative protocol that significantly increases the average throughput of multihop upstream transmissions for wireless tree networks is developed and analyzed. A system in which transmissions are assigned to nodes in a collision free, spatial time division fashion is considered. The suggested protocol exploits the broadcast nature of wireless networks where the communication channel is shared between multiple adjacent nodes within interference range. For any upstream end-to-end flow in the tree, each intermediate node receives information from both one-hop and two-hop neighbors and transmits only sufficient information such that the next upstream one-hop neighbor will be able to decode the packet. This approach can be viewed as the generalization of the classical three node relay channel for end-to-end flows in which each intermediate node becomes successively source, relay and destination. The achievable rate for any regular tree network is derived and an optimal schedule that realizes this rate in most cases is proposed. Our protocol is shown to dramatically outperform the conventional scheme where intermediate nodes simply forward the packets hop by hop. At high signal-to-noise ratio (SNR), it yields approximately 66% throughput gain for practical scenarios.  相似文献   

6.
There have been several results that illustrate the best performance that a network can get through cooperation of relay nodes. For practical purposes, not all nodes in the network should be involved at the same time in every transmission. Therefore, optimal partner selection protocols in cooperative wireless networks are believed to be the first important thing that should be paid attention to. This problem in our article is considered in the context of regenerative nodes and non-altruistic cooperation (no pure relay exists; all nodes have their own data to transmit). For each transmission, the protocol must provide the user (source node) a 'best partner' (relay node) to cooperate with (for network simplicity and less transmission signals here, assume that each user has only one cooperative node). A criterion is essentially needed when defining what a 'best partner' is; in this article, two factors, i.e, the successful transmission probability and the transmission power, are considered. Three optimal partner selection strategies with different goals are proposed and analyzed respectively. The simulation results show that these are all supposed to be good tradeoffs between power consumption and transmission performance.  相似文献   

7.
The unicasting mode is a natural choice in multi‐relay systems to utilize the spatial potential of source and destination nodes. In the unicasting phase, the source node transmits different data streams to several relay nodes with the downlink multi‐user precoding; in the multi‐accessing phase, relay nodes transmit the received data streams to the destination node simultaneously. In this paper, the received signal‐to‐noise‐ratio (SNR) at the destination node of the unicasting mode is analyzed and derived, which can be calculated with two SNRs related to the two phases as an approximate harmonic mean function. Then, an approximate method for calculating the system ergodic capacity is presented. The inner products between singular vectors are approximately replaced by their expectations and distribution functions of singular values are derived. The numerical and simulation results demonstrate the efficiency of the analysis and the approximate method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Mobile ad hoc networks (MANETs) rely on the benevolence of nodes within the network to forward packets from a source node to a destination node. This network construction allows for the forwarding nodes, whether they are selfish or malicious, to drop packets hindering end-to-end communication. In this paper, a new scheme is proposed against collusion black hole and slander attacks in MANETs, named E2EACK. A novel method is used to detect collusion attacks due to collusive malicious nodes which cooperate in the route discovery, but refuse to forward data packets and do not disclose the misbehavior of each other. Contrary to existing methods that detect only collusion black hole attacks, the E2EACK also detects slander attacks and framing attacks. Moreover, the E2EACK uses ACKnowledgment packet to detect malicious nodes on the path and Message Authentication Code (MAC) to authenticate the sender of each data packet. Analytical and simulation results show that the proposed scheme considerably decreases the routing overhead and increases the packet delivery ratio compared to the existing methods.  相似文献   

9.
为了提高两跳中继网络的传输速率和协同分集增益,该文提出一种非正交的选择译码转发策略传输数据。单节点协同时,协同节点仅在正确译码时采用和发送节点非正交的时序转发;在多节点协同时,采用一种节点选择算法选择译码正确且信道条件最佳的节点用于非正交转发。这种协同策略可获得和非正交放大转发相同的分集复用折衷性能,但其实现更简单,且在低信噪比时中断性能更好。  相似文献   

10.
针对多用户多中继场景下协作通信系统的中继选择问题,提出了一种基于混合智能算法的协作中继选择新方法。不同于现有的为每个源节点分配一个中继节点的中继选择方法,新方法建立了为每个源节点分配一个或多个中继节点的优化模型,以最大化多用户多中继协作系统的最小接收信噪比为优化目标,采用结合了模拟退火与遗传算法的混合智能算法来搜寻中继选择问题的最优解。仿真结果表明,所提方法可显著提高目的端的接收信噪比,且算法具有较强的全局搜索和快速寻优能力。  相似文献   

11.
Wang  Heng  Wei  Xinyu  Li  Min 《Wireless Personal Communications》2017,97(2):2097-2130

This work proposes a non-orthogonal selection cooperation scheme with interference for multi-source and single destination cooperative networks. In our model, the source nodes can cooperate for one another, i.e., each source node plays the dual role of a source and a relay, thus there is no need for relays. In addition, the source nodes can be continuously transmitted and without dedicated timeslots for cooperative transmissions, which can save system resources and improve spectral efficiency. However, by this way, it will introduce interference with the non-orthogonal transmission mechanism. To overcome this problem, we use general reception scheme in source nodes and successive interference cancellation technology in the destination node, which can reduce the effect of interference effectively. For interference-limited networks, we also derive the theoretical upper bound and lower bound of outage probability of our method. Through the outage probability analysis and comparison, the results show that the spectral efficiency is improved while the system still keeps acceptable transmission reliability.

  相似文献   

12.
In wireless networks, user cooperation has been proposed to mitigate the effect of multipath fading channels. Recognizing the connection between cooperative relay with finite alphabet sources and the distributed detection problem, we design relay signaling via channel aware distributed detection theory. Focusing on a wireless relay network composed of a single source-destination pair with L relay nodes, we derive the necessary conditions for optimal relay signaling that minimizes the error probability at the destination node. The derived conditions are person-by-person optimal: each local relay rule is optimized by assuming fixed relay rules at all other relay nodes and fixed decoding rule at the destination node. An iterative algorithm is proposed for finding a set of relay signaling approaches that are simultaneously person-by-person optimal. Numerical examples indicate that the proposed scheme provides performance improvement over the two existing cooperative relay strategies, namely amplify-forward and decode-forward  相似文献   

13.
In relay-assisted cooperative com-munication, relay nodes help forwarding the information of a source node in case of link failure between the source and a destination. Although user cooperation improves the over-all efficiency of the network, it requires incen-tive to stimulate potential relay nodes to assist the source by forwarding its data to the desti-nation. Moreover, the potential relays are bet-ter informed than the source about their chan-nel conditions to destination, which results in asymmetric information between the source and the relays. In this paper, we study the problem of lack of forwarding incentive in cooperative communication when channel state information of relays is private infor-mation and not known by the source. To tackle this problem, we apply the principle of contract theory to a cooperative wireless system. Source first designs incentive compatible and individually rational contract, consisting of a set of power-credit pairs. Then it broadcasts contract items to nearby nodes. Once the source node receives reply messages from the volunteer relays, it chooses one or more relays based on its re-quirements and communication starts. Simulation results show how credit assignment works in order to stimulate relays to cooperate and prevents relays from cheating behavior.  相似文献   

14.
季薇  郑宝玉 《电子学报》2007,35(5):1001-1004
本文研究了协作分集下的NDMA(网络辅助分集多址接入)机制,针对无线传感器网络特点和信道矩阵满秩性要求设计中继选择准则,提出了一个新的跨层协作多包接收机制.该机制在抗信道衰落的同时可有效限制数据包重传次数,从而大大提高多包接收的效率.对新机制的性能仿真以及该机制与NDMA、联合NDMA、时隙ALOHA之间的性能对比证实了新机制的有效性.  相似文献   

15.
本文研究了中继选择方案对协作下认知非正交多址(CR-NOMA)网络中断性能的影响,提出了一种两级中继选择方案。第一时隙在保证主用户服务质量的基础上,次级网络源节点向认知中继集群广播叠加信号。第二时隙认知中继提供解码转发服务,协助源节点传输信息。基于上述假设,推导了次级用户中断概率的闭合表达式并给出了分析结果。证明相比于部分中继选择策略,两级中继选择策略可以达到更好的中断性能和更大的分集增益。同时本文的分析结果验证了备选中继节点数目和功率分配因子对系统中断性能的影响,蒙特卡罗仿真验证了理论结果。   相似文献   

16.
肖爱民  李辉 《信号处理》2011,27(12):1811-1816
针对源节点通过两个中继向目的节点发送数据的无线通信系统,为了减小传统中继协作方案的复用损失,提出了一种将源端网络编码和交替传输有效结合起来的新方案,称为交替源端网络编码(SSNC)。该方案在源端每三个时隙对发送数据进行一次网络编码,并且两个中继在相邻的时隙中交替的发送和接收数据,每个时隙中,一个中继接收源端数据的同时另一个中继转发上一个时隙其接收到的数据给目的端。通过对该方案的中断概率和分集复用折中性能的推导和分析,发现该方案相对于传统的重复编码和分布式空时码方案在获得相同分集阶数的情况下有更高的传输效率,在实际的通信系统中可以兼顾性能和效率。仿真结果证实了我们的结论。   相似文献   

17.
Using network coding in a wireless network can potentially improve the network throughput. On the other hand, it increases the complexity of resource allocations as the quality of one transmission is affected by the link conditions of the transmitter to multiple receivers. In this work, we study time slot scheduling and channel allocations jointly for a network with bidirectional relaying links, where the two end nodes of each link can exchange data through a relay node. Two scenarios are considered when the relay node forwards packets to the end nodes. In the first scenario, the relay node always forwards network‐coded packets to both end nodes simultaneously; in the second scenario, the relay node opportunistically uses network coding for two‐way relaying and traditional one‐way relaying. For each scenario, an optimization problem is first formulated for maximizing the total network throughput. The optimum scheduling is not causal because it requires future information of channel conditions. We then propose heuristic scheduling schemes. The slot‐based scheduling maximizes the total transmission rate of all the nodes at each time slot, and the node‐based scheduling schedules transmissions based on achievable transmission rates of individual nodes at different channels. The node‐based one has lower complexity than the slot‐based one. Our results indicate that although the node‐based scheduling achieves slightly lower throughput than the slot‐based one, both the proposed scheduling schemes are very effective in the sense that the difference between their throughput and the optimum scheduling is relatively small in different network settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.

Device-to-device communication allows a cellular user (relay node) to relay data between the base station (BS) and another cellular user (destination node). We address the problem of designing reverse auctions to assign a relay node to each destination node, when there are multiple potential relay nodes and multiple destination nodes, in the scenarios where the transmission powers of the relay nodes are: (1) fixed, (2) selected to achieve the data rates desired by destination nodes, and (3) selected so as to approximately maximize the BS’s utility. We show that auctions based on the widely used Vickrey–Clarke–Groves (VCG) mechanism have several limitations in scenarios (1) and (2); also, in scenario (3), the VCG mechanism is not applicable. Hence, we propose novel reverse auctions for relay selection in each of the above three scenarios. We prove that all the proposed reverse auctions can be truthfully implemented as well as satisfy the individual rationality property. Using numerical computations, we show that in scenarios (1) and (2), our proposed auctions significantly outperform the auctions based on the VCG mechanism in terms of the data rates achieved by destination nodes, utility of the BS and/or the interference cost incurred to the BS.

  相似文献   

19.
In this paper, a new relay selection scheme is proposed to reduce the end-to-end packet delivery delay for buffer-assisted multihop decode-and-forward cooperative networks. The proposed method selects a relay node having more packets in the associated buffer and relay's proximity to the destination node. Mathematical expressions for the outage probability and average packet delay in Rician fading are obtained by modeling the system as a Markov chain. The proposed relay selection scheme has less packet delay as compared to the max-link relay selection scheme with marginally higher outage probability. Thus, the proposed relay selection scheme is a good alternative to low latency wireless applications.  相似文献   

20.
马梦欢  贺玉成  张彦  陈启望 《信号处理》2022,38(10):2155-2163
针对存在多个非共谋窃听者,研究了一种基于全双工中继和两阶段中继选择(TSRS)的非正交多址接入(NOMA)物理层安全通信方案。每个通信过程包含一个传输时隙,系统在每个时隙开始由TSRS策略选择最优中继,所选中继在从源节点接收NOMA叠加信号的同时,向两个目的节点转发上一时隙的再编码叠加信号,两个目的节点采用串行干扰消除(SIC)技术从中继叠加信号中解码获取各自的期望信号。推导了非理想SIC下系统安全中断概率的近似表达式,进行了蒙特卡洛(Monte-Carlo)仿真验证,同时分析了各仿真参数(SIC残余干扰系数、目标安全速率、中继规模等)与系统安全中断概率的关系。理论分析与模拟仿真的结果表明,全双工技术与TSRS的结合方案能有效提升系统的安全中断性能。将该方案应用于实际通信系统设计时,选择合适传输信噪比(SNR)、提高串行干扰消除能力或适当增加中继数量均可实现更好的保密性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号