首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single-stage power factor correction (PFC) ac-dc converters usually suffer from high bulk capacitor voltage stress and extra switch current stress. Bulk capacitor voltage feedback with a coupled-winding structure can dramatically alleviate the stresses. However, this type of feedback is indirect because the feedback only occurs after the bulk capacitor voltage increases. This paper presents a family of single-switch single-stage parallel PFC ac-dc converters with inherent load current feedback. Unlike the bulk capacitor voltage feedback, which utilizes the decreased duty ratio and the increased bulk capacitor voltage to reduce the input power at light load, the load current feedback can reduce the input power automatically at light load while maintaining an unchanged duty ratio. The proposed converters combine the advantages of simple topology, low bulk capacitor voltage, and no extra current stress across the switch. The concept is verified using an ac-dc converter with universal-line input and 5-V, 60-W output power. The input current harmonics meet IEC1000-3-2 Class D requirements.  相似文献   

2.
A topological review of the single stage power factor corrected (PFC) rectifiers is presented in this paper. Most reported single-stage PFC rectifiers cascade a boost-type converter with a forward or a flyback DC-DC converter so that input current shaping, isolation, and fast output voltage regulation are performed in one single stage. The cost and performance of single-stage PFC converters depend greatly on how its input current shaper (ICS) and the DC-DC converter are integrated together. For the cascade connected single-stage PFC rectifiers, the energy storage capacitor is found in either series or parallel path of energy flow. The second group appears to represent the main stream. Therefore, the focus of this paper is on the second group. It is found that many of these topologies can be implemented by combining a two-terminal or three-terminal boost ICS cell with DC-DC converter along with an energy storage capacitor in between. A general rule is observed that translates a three-terminal ICS cell to a two-terminal ICS cell using an additional winding from the transformer and vice verse. According to the translation rule, many of the reported single-stage PFC topologies can be viewed as electrically equivalent to one another. Several new PFC converters were derived from some existing topologies using the translation rule  相似文献   

3.
An analysis and design of single-stage, single-switch bi-flyback ac/dc converter is presented. The main flyback stage controls the output power from the link capacitor voltage with Discontinuous Conduction Mode (DCM) or Continuous Conduction Mode (CCM) operation, while an auxiliary flyback stage supplies the power to the output directly from ac line input with DCM operation.

This scheme can effectively reduce the voltage stress on the link capacitor and can achieve the power factor correction (PFC) without a dead band at line zero-crossings, which reduces the harmonic distortion in ac line current. Theoretical analysis of the converter is presented and design guidelines to select circuit components are given. The experimental results on a 60?W (15?V, 4?A), 100?kHz ac/dc converter show that maximum link voltage and maximum efficiency are around 415?V and 82%, respectively. The power factor is above 0.96 under universal line input and load conditions.  相似文献   

4.
A single-stage single-switch AC–DC integrated converter is proposed in this paper, as a tight DC voltage regulator with unity input power factor for the fundamental component of the input current. Proposed converter is formed by the integration of buck-boost configuration with a buck converter operated by a single switch. The buck-boost section of the proposed configuration is operated in current discontinuous conduction mode (DCM) to get unity input power factor at the supply terminals and the buck section is operated up to boundary current conduction mode (BCM). The features acquired by the converter operating in complete discontinuous conduction mode (DCM) are unity input power factor, zero-current turn-ON for the Switch, fast and good DC output voltage regulation with extensive conversion range and low voltage stress on the switch. Additionally, the intermediate capacitor voltage stress is independent of converter load variations and so the switch also is subjected to constant peak voltage stress. A comprehensive study is carried out to obtain the necessary design equations. A design model is implemented using simulation and hardware. The results confirm the performance of the proposed configuration.  相似文献   

5.
文章研究了一种新型单级单开关PFC反激变换器。该变换器负载变轻时其储能电容电压不会飘升,应用于宽范围交流输入电压,储能电容电压低于450V。变换器用其变压器中的一个附加绕组实现了升压功能。由于省去了大电感,减小了变换器的体积和重量,在中小功率应用场合下,变换器符合IEC61000-3-2class D谐波标准,并且具有输出电压快速调节能力。  相似文献   

6.
A single-stage single-switch power-factor-correction (PFC) AC/DC converter with universal input is presented in this paper. The PFC can be achieved based upon the charge-pump concept, and the PFC stage operates in the continuous current mode (CCM). The switch has less current and voltage stresses over a wide range of load variation so that a low-voltage rating device can be used. The presented converter features high power factor, high efficiency, and low cost. An 80-W prototype was implemented to show that it has 85% efficiency with low-voltage stress from 0.5% to 100% load variation over universal line input  相似文献   

7.
The complete DC characteristics of three-phase modular power-factor-correction (PFC) converters using single-phase pulsewidth modulation (PWM) DC-to-DC converter modules for high-power applications are studied. Using circuit averaging, the converter input and output quantities are determined numerically. Both the continuous and discontinuous output current modes of operation (CCM and DCM) are studied in detail. Near-unity power factor can be achieved with the converter modules operating in the DCM. An averaged model was used to study and determine the boundaries between DCM and CCM over the full period of the three-phase input voltage. It is found that high power factor is inherent in the converter system provided that the converters are operated in the DCM and the voltage conversion ratio is selected properly. The criteria for obtaining high power factor are analyzed and the optimal circuit parameters are determined to obtain the best achievable power factor. Both simulations and experimental results from a 1.5-kW prototype using full-bridge converter modules have confirmed the analysis  相似文献   

8.
A single-stage power-factor-corrected AC/DC converter   总被引:1,自引:0,他引:1  
This paper presents a single-stage isolated converter topology designed to achieve a regulated DC output voltage having no low-frequency components and a high-input power factor. The topology is derived from the basic two-switch forward converter, but incorporates an additional transformer winding, inductor and a few diodes. The proposed circuit inherently forces the input current to be discontinuous and AC modulated to achieve high-input power factor. The converter output is operated in discontinuous mode to minimize the bulk capacitor voltage variations when the output load is varied. Analysis of the converter is presented, and performance characteristics are given. Design guidelines to select critical components of the circuit are presented. Experimental results on a 150 W 50 kHz universal input (90-265 V) 54.75 V output AC/DC converter are given which confirm the predicted performance of the proposed topology  相似文献   

9.
A single-stage power-factor-corrected AC/DC converter (SSPFC) usually causes high voltage stress on the intermediate storage capacitor, due to the lack of control of this voltage. The storage capacitor voltage varies largely with line voltage, and load current and is usually higher than the peak line voltage. This paper presents a new single-switch SSPFC based on a flyback topology for which the storage capacitor voltage is loosely regulated by the output voltage. Without using extra power switches to increase the control dimension, the proposed converter uses a flyback converter with dual-output transformer to achieve the control purpose. The range of storage capacitor voltage change against the change of input voltage and load current is significantly reduced. Moreover, the maximum storage capacitor voltage can stay below the peak line voltage at high line condition. Experimental results verifying the operation of the proposed SSPFC are also reported.  相似文献   

10.
A novel power factor correction (PFC) cell, called flyboost, is presented. The proposed PFC cell combines power conversion characteristics of conventional flyback and boost converters. Based on the flyboost PFC cell, a new family of single-stage (S/sup 2/) ac/dc converters can be derived. Prominent features of newly derived S/sup 2/ converters include: three power conversions, i.e., boost, flyback, and another isolated dc/dc power conversions are simultaneously realized that typically uses only one power switch and one simple controller; part of the power delivered to the load is processed only once; bulk capacitor voltage can be clamped to the desired level; and capable of operating under continuous current mode. Experimental results on example converters verify that while still achieving high power factor and tight output regulation, the flyboost PFC cell substantially improve the efficiency of the converter.  相似文献   

11.
By means of components placement, the buck-boost and diagonal half-bridge forward converters are combined to create a novel single-stage high power factor correction (HPFC) diagonal half-bridge forward converter. When both the PFC cell and dc–dc cell operate in DCM, the proposed converter can achieve HPFC and lower voltage stress of the bulk capacitor. The circuit analysis of the proposed converter operating in$ DCM+ DCM$mode is presented. In order to design controllers for the output voltage regulation, the ac small-signal model of the proposed converter is derived by the averaging method. Based on the derived model, the proportional integral (PI) controller and minor-loop controller are then designed. The simulation and experimental results show that the proposed converter with the minor-loop controller has faster output voltage regulation than that with the PI controller despite the variations of line voltage and load. Finally, a 100-W prototype of the proposed ac–dc converter is implemented and the theoretical result is experimentally verified.  相似文献   

12.
文中主要研究的对象是开环控制的交错并联BOOST PFC,且工作于临界续断模式,它的从变换器与主变换器在开通时同步,且主从变换器都工作在电流模式。文章指出只有这种主从方式能提供一个稳定的开环工作点。仿真实验设计了一台输入功率为400W,宽范围输入电压,400V输出电压的实验样机,实验结果验证了理论分析的正确性。  相似文献   

13.
The performance of the parallel resonant power converter and the combination series/parallel resonant power converter (LCC converter) when operated above resonance in a high power factor mode are determined and compared for single phase applications. When the DC voltage applied to the input of these converters is obtained from a single phase rectifier with a small DC link capacitor, a relatively high power factor inherently results, even with no active control of the input line current. This behavior is due to the pulsating nature of the DC link and the inherent capability of the converters to boost voltage during the valleys of the input AC wave. With no active control of the input line current, the power factor depends on the ratio of operating frequency to tank resonant frequency. With active control of the input line current, near-unity power factor and low-input harmonic currents can be obtained  相似文献   

14.
A new single-stage single-switch input-current-shaping (S4 ICS) technique, which combines the boost-like input-current shaper with a continuous-conduction-mode (CCM) DC/DC output stage, is described. In this technique, the boost inductor can operate in both the discontinuous conduction mode (DCM) and CCM. Due to the ability to keep a relatively low voltage (<450 VDC) on the energy-storage capacitor, this technique is suitable for the universal line-voltage applications. The voltage on the energy-storage capacitor is kept within the desirable range by the addition of two transformer windings. The principle of operation of the S4ICS circuit with a forward DC/DC converter is presented. Experimental results obtained on a 100 W (5 V/20 A) prototype circuit are also given  相似文献   

15.
This paper investigates the integrated buck-flyback converter (IBFC) as a good solution for implementing low-cost high-power-factor ac-dc converters with fast output regulation. It will be shown that, when both buck and flyback semistages are operated in discontinuous conduction mode, the voltage across the bulk capacitor, which is used to store energy at low frequency, is independent of the output power. This makes it possible to maintain the bulk capacitor voltage at a low value within the whole line voltage range. The off-line operating modes of the IBFC are also investigated to demonstrate that the control switch of the proposed converter handles lower root-mean-square currents than those in similar integrated converters. The off-line operation of the IBFC is analyzed to obtain the design characteristics of the bulk capacitor voltage. Finally, the design and experimental results of a universal input 48 V-output 100 W ac-dc converter operating at 100 kHz is presented. Experiments show that the IEC-61000-3-2 input current harmonic limits are well satisfied and efficiency can be as high as 82%.  相似文献   

16.
This paper addresses a comparative study of the spectral characteristics of four random-switching schemes that apply to the basic pulsewidth-modulation (PWM) DC/DC converters operating in discontinuous conduction mode (DCM). They include randomized pulse position modulation, randomized pulsewidth modulation, and randomized carrier frequency modulation with fixed duty cycle and with fixed duty time, respectively. Mathematical models that characterize the input current and output voltage of the three basic PWM converters operating in DCM are derived. In particular, the effectiveness of spreading the dominant switching harmonics in the input current that normally exist in the standard PWM scheme and the introduction of low-frequency harmonics in the output voltage with respect to the randomness level are investigated. The validity of the models and analyses are confirmed experimentally by using a DC/DC buck converter  相似文献   

17.
Input-Current Distortion of CCM Boost PFC Converters Operated in DCM   总被引:2,自引:0,他引:2  
When power-factor correction (PFC) converters designed for operation in continuous-conduction mode (CCM) at full power are operated at reduced load, operation in discontinuous-conduction mode (DCM) occurs in a zone that is close to the crossover of the line voltage. This zone will gradually expand with decreasing load to finally encompass the entire line cycle. Whereas, in CCM, the parasitic capacitances of the switches only cause switching losses, in DCM, they are a source of converter instability, resulting in significant input-current distortion. In this paper, this source of input-current distortion is analyzed, and a solution is proposed. Experimental results are obtained using a digitally controlled boost PFC converter, which is designed to operate in CCM for 1 kW  相似文献   

18.
This paper presents a novel modulation strategy for a power factor corrected (PFC), isolated AC/DC converter derived from the integration of a nonisolated, two switch buck-boost AC/DC converter with an isolated dual active bridge DC/DC converter (2SBBDAB). This strategy, termed discontinuous leading/trailing edge (DLTE) modulation, serves to maximize the duty cycle of the input switch while keeping the current in the buck-boost inductor discontinuous. Hence, the crest factors of the currents in the switching devices are minimized, the input switch is turned on at zero current and the zero-voltage switching ranges of the bridge switches are unaffected by the integration. A conventional isolated, PFC AC/DC converter typically consists of a boost converter cascaded with a forward converter. The ratings required of the power switching devices of the 2SBBDAB employing the DLTE modulation strategy are similar to those required of the conventional design for wide line voltage operation. However, the 2SBBDAB converter has higher line voltage surge immunity than that of the conventional design and, unlike the conventional design, it has inherent inrush current limiting. The DLTE modulation strategy may be applied to the family of converters composed of the two switch buck-boost integrated with half and full-bridge forward converters  相似文献   

19.
Active clamp topologies of low power dissipation have become a very attractive solution in order to limit overvoltages in flyback converters. Although many suitable topologies have been introduced for the case of discontinuous conduction mode (DCM), where the duty cycle value depends on the load level, in continuous conduction mode (CCM) it is more difficult to appropriately design such topologies so as to "sense" load changes-due to the small duty cycle divergence under wide load variation. Taking for granted that in order to achieve high power-factor correction in these converters, CCM is a more attractive mode of operation, a drastic solution for this case that will manage to eliminate voltage stresses under wide load changes has become very essential. For this purpose, this paper presents an active clamp topology with small power dissipation, suitable for flyback converters operating in CCM mode. Its main idea is the use of a load-dependent current source, consisting of an auxiliary converter operating in DCM mode. Experimental results highlight the effectiveness of the proposed topology under wide load changes, establishing it as an appropriate solution in order to develop flyback converters, even at the power range of 500 W.  相似文献   

20.
A single-phase single-stage ac/dc converter with input-current dead-zone control is proposed. It is based on flyback topology operating in discontinuous conduction mode (DCM). The current charging into the link capacitor is controlled according to line changes by adjusting the input-current blocking angle to alleviate an excessive increase of the link voltage. The reduced voltage stress can maintain an almost-constant voltage irrespective of load conditions by operating in dc/dc stage in DCM. Experimental results of a 60-W (5-V 12-A output) prototype converter show that the link voltage is limited within 384 V and that the measured power factor is more than 0.91 under universal voltage inputs and entire load conditions. In addition, the maximum efficiency is measured to be about 81% at the rated condition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号