首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Dynamic contrast-enhanced images with high spatial and temporal resolutions were acquired with a fast 3D spoiled gradient echo (SPGR) sequence using spectral selective inversion recovery (IR) pulse. Five healthy volunteers and 12 patients with 14 pathologically proven breast lesions were studied. Fat suppressed volume image data covering the entire breast were obtained with a sufficient spatial resolution (0.9×1.5×3.0 mm3) and an imaging time of 57 s. By using the criteria including peripheral enhancement and presence of spiculation, sensitivity, specificity, and accuracy in detecting malignant lesions were 88.9, 80.0 and 85.%, respectively. Although the C/N and S/N ratios were approximately 30% less than those of the conventional fat suppressed 3D technique, fast 3D SPGR imaging with spectral IR method demonstrated sufficient image quality for both time intensity analysis and morphological evaluation of the breast lesions with a data acquisition time less than half of the conventional method. This technique can substantially improve spatial and temporal resolutions of dynamic MR images of the breast and will be useful in evaluating malignant and benign breast lesions.  相似文献   

2.
1H MR spectroscopy is routinely used for lateralization of epileptogenic lesions. The present study deals with the role of relaxation time corrections for the quantitative evaluation of long (TE=135 ms) and short echo time (TE=10 ms) 1H MR spectra of the hippocampus using two methods (operator-guided NUMARIS and LCModel programs). Spectra of left and right hippocampi of 14 volunteers and 14 patients with epilepsy were obtained by PRESS (TR/TE=5000/135 ms) and STEAM (TR/TE=5000/10 ms) sequences with a 1.5-T imager. Evaluation was carried out using Siemens NUMARIS software and the results were compared with data from LCModel processing software. No significant differences between the two methods of processing spectra with TE=135 ms were found. The range of relaxation corrections was determined. Metabolite concentrations in hippocampi calculated from spectra with TE=135 ms and 10 ms after application of correction coefficients did not differ in the range of errors and agreed with published data (135 ms/10 ms: NAA=10.2±0.6/10.4±1.3 mM, Cho=2.4±0.1/2.7±0.3 mM, Cr=12.2±1.3/11.3±1.3 mM). When relaxation time corrections were applied, quantitative results from short and long echo time evaluation with LCModel were in agreement. Signal intensity ratios obtained from long echo time spectra by NUMARIS operator-guided processing also agreed with the LCModel results.  相似文献   

3.
The imaging characteristics of two EPI-hybrid breath-hold sequences, T2-weighted fast spin-echo [FSE, effective echo time (TEeff) 138ms] and half Fourier single shot turbo spin-echo (HASTE, TEeff 60 ms), were compared in hepatic imaging. A total of 111 patients with suspected hepatic disease were studied at 1.5 Tesla using a body phase-array coil. The signal-to-noise (S/N) and contrast-to-noise (C/N) ratios for organs and lesions were calculated and quantitatively compared. Organ delineation, visualization of anatomical structures and pathological lesions, artifacts, and total image quality were qualitatively assessed and statistically compared. The final diagnoses were metastases from colorectal, breast, and pancreatic cancer in 23/111, hepatocellular carcinoma in 15/111, cysts in 19/111, hemangiomas in 9/111, several other lesions in 7/111, and no lesions in 38/111 of the cases. A total of 139 lesion in 73% of the patients were seen while 85% of the lesions were at least 1.5 cm in size. Regarding S/Ns HASTE was significantly (P<0.03) superior to FSE with only minor (P>0.05) differences in C/Ns between the two sequences for anatomical and pathological structures. HASTE demonstrated in almost all (97.3%) of the cases no artifacts, while on fast SE imaging moderate to minor artifacts were present in 23.5–51.7% of the cases. The overall image quality and diagnostic confidence was rated significantly higher (good 43.2%, excellent 53.2%) for HASTE than for fast SE imaging (good 44.8%, excellent 17.6%). Providing comparable C/Ns for anatomical and pathological structures, breatheld HASTE imaging proved to be superior to fast SE in T2-weighted imaging of the upper abdomen regarding general image quality, and, with adequate technical prerequisites, may be a suitable substitute of fast T2-imaging techniques.  相似文献   

4.
Objectives: After I.V. administration of gadolinium-DOTA, the early contrast enhancement pattern and related signal-intensity (SI) changes in normal abdominal organs (kidney, spleen, liver) are evaluated over the first 4 min by using ultrafast spin-echo echo planar imaging (SE-EPI). Methods: On a 1.5-T magnetic resonance unit ultrafast EPI of the upper abdomen was performed in 12 patients in order to show the contrast enhancement pattern and related measurable SI changes onT 1 andT 2-weighted (w) images over the first 4 min after I.V. bolus injection of 0.1 mmol kg–1 gadolinium (Gd)-DOTA in the spleen, liver, renal cortex, and renal medulla. A TR/TE of 500/44 or 45 ms inT 1w SE-EPI and a TR/TE of 2000/80 or 100 ms inT 2-w SE-EPI were used. Results: Typical time-dependent SI changes were noticed onT 1w images: Subsequent to a SI increase in the renal cortex (starting 7 s after the I.V. injection of Gd-DOTA) SI increased first in the outer renal medulla (6 s later) and then in the inner renal medulla (21 s later). A SI increase was observed in the spleen (starting after 15 s) and in the liver (starting 7 s later). OnT 2-w images, a SI decrease in the renal cortex (starting after 14 s) was followed by migration of a dark band from the outer (after 46 s) to the inner medulla (after 70 s). Only minimal changes were noticed in the spleen and liver. Conclusions: Ultrafast SE-EPI following I.V. bolus injection of Gd-DOTA enables the observation of the very early contrast agent kinetics in various abdominal organs. The associated SI changes onT 1- andT 2- SE EPI are related to organ perfusion and contrast agent tissue concentration and biodistribution.Additional reprints of this chapter may be obtained from the Reprints Department, Chapman & Hall, One Penn Plaza, New York, NY 10119.  相似文献   

5.
Pathological changes in tissue often manifest themselves in an altered sodium gradient between intra- and extracellular space due to a malfunctioning Na+–K+ pump, resulting in an increase in total sodium concentration in ischaemic regions. Therefore, 23Na-MRI has the potential to non-invasively differentiate viable from non-viable tissue by detecting concentration changes of intra- and extracellular sodium. As the in vivo sodium signal shows a bi-exponential T2 decay, with a short component of less than 1 ms, the accurate quantification of the total sodium content requires imaging techniques with ultra-short echo times (TE) below 0.5 ms. A 3D-radial projection technique has been developed which allows the acquisition of ECG-triggered sodium images of the human heart with a TE of 0.4 ms. With this pulse sequence 23Na-MRI volunteer measurements of the head or the heart were performed in less than 18 min on a 1.5-T clinical scanner with an isotropic resolution of 10 mm3. The signal to noise ratio of the radial projection technique is twofold higher than that of a Cartesian gradient echo pulse sequence (TE = 3.2 ms). Radial 23Na-MRI provides a tool for clinical studies, aiming at the differentiation of viable and non-viable tissue.  相似文献   

6.
The aim of this study was to compare conventional spin-echo (CSE)T 2-weighted (T2W) images with turbo spin-echo (TSE) T2W pulse sequences in their ability to detect focal liver lesions. Seventy-eight consecutive patients with focal liver lesions were entered into this study. All patients were imaged using the gradient-echo (GE) sequence with the breath-hold technique forT 1-weighted (T1W) images, and CSE and TSE sequences for T2W images. Qualitative evaluation included lesion detection (number of lesions detected) and conspicuity (extent of visualization of lesional borders); quantitative evaluation included the signal-to-noise (S/N) ratio and the contrast-to-noise (C/N) ratio. TSE showed the best performance in terms of lesion detection; however, the difference between TSE and CSE was significant only in the case of benign cysts (p<0.01). Conspicuity was higher with TSE and CSE, and lower with GE. The S/N and C/N ratios of the two T2W sequences were also comparable, and better than those of GE. However, the combined use of GE and TSE resulted in improved lesion detection. The results show that, because the acquisition time is greatly reduced with TSE sequences, these should be considered as first-line approach to magnetic resonance imaging of the liver for the study of focal lesions.  相似文献   

7.
Magnetic resonance imaging (MRI) is the modality of choice for visualizing and quantifying articular cartilage thickness. However, difficulties persist in MRI of subchondral bone using spoiled gradient-echo (SPGR) and other gradient-echo sequences, primarily due to the effects of chemical-shift artifact. Fat-suppression techniques are often used to reduce these artifacts, but they prevent measurement of bone thickness. In this report, we assess the magnitude of chemical-shift effects (phase-cancellation and misregistration artifacts) on subchondral bone and cartilage thickness measurements in human femoral heads using a variety of pulse sequence parameters. Phase-cancellation effects were quantified by comparing measurements from in-phase images (TE=13.5 ms) to out-of-phase images (TE=15.8 ms). We also tested the assumption of the optimal in-phase TE by comparing thickness measures at small variations on TE (13.0, 13.5 and 14.0 ms). Misregistration effects were quantified by comparing measurements from water+fat images (water-only+fat-only images) to the measurements from in-phase (TE=13.5) images. A correction algorithm was developed and applied to the in-phase measurements and then compared to measurements from water+fat images. We also compared thickness measurements at different image resolutions. Results showed that both phase-cancellation artifact and misregistration artifact were significant for bone thickness measurement, but not for cartilage thickness measurement. Using an in-phase TE and correction algorithm for misregistration artifact, the errors in bone thickness relative to water+fat images were non-significant. This information may be useful for developing pulse sequences for optimal imaging of both cartilage and subchondral bone. Electronic Publication  相似文献   

8.
OBJECTIVE: Self-gating (SG) is a method to record cardiac movement during MR imaging. It uses information from an additional short, non-spatially encoded data acquisition. This usually lengthens TE and increases the sensitivity to flow artifacts. A new flow compensation scheme optimized for self-gating sequences is introduced that has very little or no time penalty over self-gating sequences without flow compensation. MATERIALS AND METHODS: Three variants of a self-gated 2D spoiled gradient echo or fast low angle shot (FLASH) sequence were implemented: without (noFC), with a conventional, serial (cFC), and with a new, time-efficient flow compensation (sFC). In experiments on volunteers and small animals, the sequence variants were compared with regard to the SG signal and the flow artifacts in the images. RESULTS: Both cFC and sFC reduce flow artifacts in cardiac images. The SG signal of the sFC is more sensitive to physiological motion, so that a cardiac trigger can be extracted more precisely as in cFC. In a typical setting for small animal imaging, sFC technique reduces the echo/repetition time over cFC by about 23%/14%. CONCLUSION: The time-efficient sFC technique provides flow-compensated images with cardiac triggering in both volunteers and small animals.  相似文献   

9.
The usefullness of MR imaging in the characterization of pheochromocytomas was evaluated in 9 patients with 13 pheochromocytomas and 1 paraganglioma. In two patients the tumors were multiple and in one, extra-adrenal. Two patients conformed to MEN2 syndrome. Adrenal masses were characterized using several parameters: (a) visual inspection of the signal intensities in T1-, T2-, and Gd-DTPA-enhanced T1-weighted images; (b) observed signal intensity and observed signal intensity ratios (adrenal mass/liver, adrenal mass/retroperitoneal fat and adrenal mass/ subcutaneous fat) in the T2-weighted images; (c) calculated T2 relaxation times and calculated T2 relaxation time ratios (adrenal mass/liver, adrenal mass/retroperitoneal fat and adrenal mass/subcutaneous fat) of the adrenal masses.All pheochromocytomas had a T2 relaxation time greater than 82 ms with a maximum value of 134.3 ms. These values were calculated using T2 quantitative analysis methods based on in-house designed mathematical routines (T2-QMRI). The signal intensities of the tumor on T2-weighted spin-echo images were extremely high.As a conclusion of this preliminary report it is postulated that T2 quantitative MRI examination (T2-QMRI) is an accurate method for the diagnosis and characterization of pheochromocytomas because it gives positive diagnostic results whether the pheochromocytoma is secreting or nonfunctioning. It can also detect extra-adrenal pheochromocytomas (paragangliomas). Comparative studies with other adrenal tumors is essential to assess accuracy of this method for characterizing these tumors.Address for correspondence: Areteion University Hospital, Radiology Department, VasSofias 76 st, 11528 Athens, Greece. Additional reprints of this chapter may be obtained from the Reprints Department, Chapman & Hall, One Venn Plaza, New York, NY 10119.  相似文献   

10.
The purpose of this study was to evaluate the potential ability of magnetic resonance imaging (MRI) for evaluation of myocardial iron deposits. The applied MRI technique has earlier been validated for quantitative determination of the liver iron concentration. The method involves cardiac gating and may, therefore, also be used for simultaneous evaluation of myocardial iron. The tissue signal intensities were measured from spin echo images and the myocardium muscle signal intensity ratio was determined. The SI ratio was converted to tissue iron concentration values based on a modified calibration curve from the liver model. The crucial steps of the method were optimized; i.e. recognition and selection of the myocardial slice for analysis and positioning of the regions of interest (ROIs) within the myocardium and the skeletal muscle. This made the myocardial MRI measurements sufficiently reproducible. We applied this method in 41 multiply transfused patients. Our data demonstrate significant positive linear relationships between different iron store parameters and the MRI-derived myocardial iron concentration, which was significantly related to the serum ferritin concentration (ρ = 0.62.P < 0.0001) and to the MRI-determined liver iron concentration (ρ = 0.36,P = 0.02). The myocardial MRI iron concentrations demonstrated also a significant positive correlation with the number of blood units given (ρ = 0.45,P = 0.005) and the aminotransferase serum concentration (ρ = 0.54,P = 0.0008). Our data represents indirect evidence for the ability of MRI techniques based on myocardium/muscle signal intensity ratio measurements to evaluate myocardial iron overload.  相似文献   

11.
A three-dimensional sodium imaging technique with a minimum echo time of 0.9 ms is described in a 2.0 Tesla whole-body system. The relaxation behaviour in vivo of sodium was analysed: a lastT 2 * relaxation component between 1.2 and 1.6 ms and a slowT 2 * relaxation component between 7.1 ms and 8.4 ms were quantified in brain tissue of three volunteers. Three-dimensional sodium images of the human brain were acquired in 8.5 min with a resolution of 4.7 × 4.7 × 10 mm (0.2 cc voxel size) and a signal-to-noise ratio of 20 in brain tissue and 30 in cerebrospinal fluid.  相似文献   

12.
To determine whether the echo time of magnetic resonance gradient-echo and spin-echo imaging sequences may be important for the occurrence of high signal strength from tendon with pathological alterations, imaging sequences with sufficient spatial resolution and very short echo times were developed for whole-body imagers with standard gradient system. The sequences were applied on the Achilles tendons of five healthy volunteers and seven patients with achillodynia. Some affected regions inside tendon, probably corresponding with tissue with subtle edema in the collagen bundles were only revealed in images recorded with very short echo times TE<5 ms, whereas stronger affections and protons in liquids between the fiber bundles were also shown in images with longer echo times TE>10 ms. Gradient-echo methods allow shorter echo times than spin-echo techniques for a given gradient system of the imager and given spatial resolution. So minimum echo time gradient-echo sequences should be used for sensitive imaging of tendon alterations, because no considerable signal dephasing due to susceptibility effects were found in tendon.  相似文献   

13.
The results of spectroscopic imaging (SI) measurements are often presented as metabolic images. If the spectra quality is not sufficient, the calculated concentrations are biased and the metabolic images show an incorrect metabolite distribution. To simplify the quality analysis of spectra measured by SI, an error image, reflecting the accuracy of the computed concentrations, can be displayed along with the metabolite image. In this paper the relevance of Cramer–Rao bounds (CRBs) calculated by the LCModel program to describe errors in estimated concentrations is validated using spectra simulations. The relation between the average CRBs and standard deviations (STD) of metabolite concentrations from 100 simulated spectra for various signal to noise ratio and line broadening conditions is evaluated. A parameter for calculating error images for metabolite ratios is proposed and an effective way to display error images is shown. The results suggest that the average CRBs are strongly correlated with the standard deviations and hence that CRB values reflect the relative uncertainty of the calculated concentrations. The error information can be integrated directly into a metabolite image by displaying only those areas of the metabolite image with corresponding CRBs below a selected threshold or by mapping CRBs as a transparency of the metabolite image. The concept of error images avoids extensive examination of each SI spectrum and helps to reject low quality spectra Part of the study was presented at the ESMRMB meeting, 2004, Copenhagen  相似文献   

14.
Fast SE imaging provides considerable measure time reduction, high signal-to-noise ratios as well as similar contrast behavior compared to conventional SE sequences. Besides TR and TEeff, echo train length (ETL), interecho time , and-space trajectory determine image contrast and image quality in fast SE sequences. True proton density contrast (CSF hypointense) and not too strong T2 contrast are essential requirements in routine brain MRI. A Turbo SE sequence with very short echo train length (ETL=3), short TEeff and short interecho time (17 ms), and TR=2000 ms was selected for proton density contrast; a Turbo SE sequence with ETL=7, TEeff=90 ms, =22 ms, and TR=3250 ms was selected for T2-weighted images. Using both single-echo Turbo SE sequences yielded 50% measure time reduction compared to the conventional SE technique. Conventional SE and optimized Turbo SE sequences were compared in 150 patients resulting in very similar signal and contrast behavior. Furthermore, reduced flow artifacts in proton density—and especially in T2-weighted Turbo SE images—and better contrast of high-intensity lesions in proton density-weighted Turbo SE images were found. Slightly reduced edge sharpness—mainly in T2-weighted Turbo SE images—did not reduce diagnostic reliability. Differences between conventional and Turbo SE images concerning image contrast and quality are explained regarding special features of fast SE technique.Address for correspondence: Institut für Röntgendiagnostik, Klinikum der Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93042 Regensburg, Germany. Additional reprints of this chapter may be obtained from the Reprints Department, Chapman & Hall, One Venn Plaza, New York, NY 10119.  相似文献   

15.
Objective/Patients: to investigate the efficacy of standard sequences of a low field system for the detection of osteomyelitis, we tested TlwI pre and post i.v. contrast, T2w and fat suppressed IR sequences. Design: on the basis of clinical and laboratory evidence, pathology reports, and three phase granulocyte scintigraphy, osteomyelitis was diagnosed in 18 of 21 patients with Charcot's joints. A consecutive low and high field magnetic resonance (MR) scan confirmed osteomyelitic bone marrow changes in the same osseous regions. These 18 diabetic patients were then studied on a 0.2 Tesla dedicated MR system (Esaote ArtoScan) using TlwI (SE: relaxation time (TR) 520/echo time (TE) 24: axial and coronal) before and after i.v. application of 0.1 mmol/1 Gd-DTPA/kg BW, T2w imaging (TSE: TR 3500/TE 80 or TR 2000/TE 120: axial), and fat suppressed inversion recovery (IR) imaging (short tau inversion recovery (STIR): TR 3000/TE 30/TI 80 or inversion recovery gradient echo (IRGE)/fat suppressed IRGE (GEFS): TR 1000/TE 16m 80: coronal). Results: the SE Tlw sequence showed a significantly higher contrast-to-noise ratio (CNR) before administration of i.v. contrast. The TSE T2w pulse sequence demonstrated bone marrow changes superiorily utilizing a TE of 120 ms (CNR=16.5±2.7 compared to 5.5±2.5 with TE=80 ms). The IRGE showed a higher CNR than the standard STIR (CNR=19.2±2.5 compared to 12.4±2.9). Conclusion: fat suppressed IRGE imaging and longer TE in T2w TSE sequences result in a significantly better, CNR in osteomyelitis. This way, using optimized sequences, low field systems are apt to depict bone marrow changes in the course of osteomyelitis.  相似文献   

16.
Object: Demonstrating the feasibility of magnetic resonance imaging (MRI) at 1.5 T of ultrasmall particle iron oxide (USPIO)-antibody bound to tumor cells in vitro and in a murine xenotransplant model. Methods: Human D430B cells or Raji Burkitt lymphoma cells were incubated in vitro with different amounts of commercially available USPIO-anti-CD20 antibodies and cell pellets were stratified in a test tube. For in vivo studies, D430B cells and Raji lymphoma cells were inoculated subcutaneously in immunodeficient mice. MRI at 1.5 T was performed with T1-weighted three-dimensional fast field echo sequences (17/4.6/13°) and T2-weighted three-dimensional fast-field echo sequences (50/12/7°). For in vivo studies MRI was performed before and 24 h after USPIO-anti-CD20 administration. Results: USPIO-anti-CD20-treated D430B cells, showed a dose-dependent decrease in signal intensity (SI) on T2*-weighted images and SI enhancement on T1-weighted images in vitro. Raji cells showed lower SI changes, in accordance to the fivefold lower expression of CD20 on Raji with respect to D430B cells. In vivo 24 h after USPIO-anti-CD20 administration, both tumors showed an inhomogeneous decrease of SI on T2*-weighted images and SI enhancement on T1-weighted images. Conclusions: MRI at 1.5 T is able to detect USPIO-antibody conjugates targeting a tumor-associated antigen in vitro and in vivo.  相似文献   

17.
MRI and MRS are established techniques for the evaluation of intracranial mass lesions and cysts. The 2.03 ppm signal recorded in their 1H-MRS spectra is often assigned to NAA from outer volume contamination, although it has also been detected in non-infiltrating tumours and large cysts. We have investigated the molecular origin of this resonance in ten samples of cystic fluids from human brain tumours. The NMR detected content of the 2.03 ppm resonance in 136 ms echo time spectra, assuming an N- CH3 origin, was 3.19 ± 1.01 mM. Only one third (34 ± 12%) of the N-acetyl containing compound (NAC) signal could be extracted by perchloric acid (PCA) indicating that most of it originated in a macromolecular PCA-insoluble component. Chemical analysis of the cyst fluids showed that sialic acid bound to macromolecules would account for 64.3% and hexuronic containing compounds for 29.2% of the NMR-detectable ex vivo signal, 93.4% of the signal at TE 136 ms. Lactate content measured by NMR (6.4 ± 4.4 mM) and the predominance of NAC originating in sialic acid point to a major origin from tumour rather than from plasma for this 2.03 ppm resonance.  相似文献   

18.
Objective The objective of this study was to assess the feasibility of using ultrashort TE (UTE) pulse sequences to image the lumbar spine.Materials Pulse sequences of TE=0.08 ms were used to image the lumbar spine in 5 normal subjects and 14 patients with degenerative disease. Contrast enhancement was administered in 11 cases.Results The sequences showed high signal in the anterior and posterior longitudinal ligaments, the cartilaginous end plate, the annulus fibrosus, the ligamentum flavum, interspinous ligaments and insertions of ligaments. Normal contrast enhancement was seen in these structures. Enhancement of hypertrophied ligaments and scar tissue was readily identified. Long T2 suppression techniques were useful in distinguishing enhancement of scar tissue from veins. Enhancement in discs was more obvious than with conventional sequences. In a case of thalassaemia bands of high signal were seen in the intervertebral discs parallel to the end plates.Conclusion The UTE sequences offer new options for visualizing discs, scar tissue, ligaments and other structures of the lumbar spine in health and disease.  相似文献   

19.
Modified point-resolved spectroscopy (PRESS) sequences for single voxel spetroscopy (MRS) and spectroscopic imaging (SI) with very short echo time (T E ) are described using asymmetric radio-frequency (RF) pulses as well as an optimized design and timing of the PRESS sequence. The proposed sequences were implemented on a standard 4.7 T imaging system yielding a T E of 6.0 ms only. Simulations and experimental data measured on phantoms and the rat brain in vivo are presented for MRS and SI showing a high signal-to-noise ratio and hardly any phase distortions caused by J-coupling.  相似文献   

20.
It has been predicted that liver and spleen enhancement after administration of superparamagnetic contrast agents may be different, depending on the strength of the main magnetic field. With the use of anex vivo model, we investigated at 0.3, 0.5, and 1.5 T the effects on liver and spleen signal intensity of 5, 15, and 45 µmol/kg body weight of dextran magnetite (SHU 555A) in 54 rats. Nine rats served as controls. At different time delays since injection, the animals were killed, and after perfusion with saline, the liver, brain, and spleen were fixed in formalin. The specimens were embedded in an agar gel matrix and imaged with inversion recovery T1-weighted, proton density spin echo, and T2*-weighted gradient recalled echo (GRE) sequences. At each magnetic field strength, peak liver and spleen signal loss increased with increasing dose of the contrast medium. Signal loss was significantly more conspicuous after a dose of 15 than 5 µmol/kg body weight, but not after a dose of 45 compared with 15 µmol/kg. No signal change was observed in the brain. GRE images showed higher enhancement than proton density-weighted spin echo and inversion recovery images but were noisier. The enhancement showed a plateau between 30 min and 24 hours. Only the signal decrease of the liver after a low dose of contrast medium on GRE images was significantly higher (p<0.01) at 1.5 than at 0.5 and 0.3 T. Other differences in respect to the field strength were less significant (p<0.05) or nonsignificant. Differences in the spleen enhancement were nonsignificant. SHU 555A at a dose of 15 µmol/kg is an efficient intracellular contrast agent for liver and spleen at low, mid, and high field strength. Proton density spin echo images are probably the sequence of choice to exploit SHU 555A contrast effects and a wide time window for imaging after its intravenous injection does exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号