首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为增加LED用荧光粉红色发光成分,用高温固相法在还原气氛下制备掺Gd、Tb、La的YAG:Ce^3+荧光粉,用F-4600荧光分光光度计测定激发光谱和发射光谱.研究Gd、Tb、La的不同掺入量对YAG:Ce^3+荧光粉发光性能的影响.结果表明:该荧光粉激发光谱峰值在475 nm附近,发射光谱峰值在540~560 nm之间.掺杂Gd和Tb使得YAG:Ce^3+荧光粉发射光谱有不同程度的红移,掺Gd的YAG:Ce^3+荧光粉的发射光谱红移较Tb更明显;掺杂La的YAG:Ce^3+荧光粉光谱图峰位发生了蓝移.  相似文献   

2.
用高温固相法在还原气氛下制备掺Gd的YAG:Ce3+荧光粉,并用X射线衍射分析测定(Y1-y,Gdy)2.94Al5O12:Ce0.063+荧光粉的晶体结构,用970CRT荧光分光先度计测定激发光谱和发射光谱.研究Ce3+的不同掺入量对YAG:Ce3+荧光粉的发光性能的影响.结果表明,合成样品的结构属于立方形的钇铝石榴石晶体结构.激发峰位于475nm处,归属于Ce3+的4f到5d跃迁,发射峰位于542nm处,归属于Ce3+的5d到4f跃迁.  相似文献   

3.
采用溶胶-凝胶法,以柠檬酸为络合剂,乙二醇为螯合剂合成了YAG:Ce3+超细荧光粉.利用X射线衍射、电镜和荧光光谱等测试手段时合成的YAG:Ce3+样品的结构、形貌和发光性质进行了研究.XRD图谱结果表明:所有样品均为立方相.根据Scherrer公式计算,900℃、1000℃和1100℃热处理后样品晶粒的平均粒径分别为69nm、72 nm和89 nm.粒子的粒径和衍射峰强度随热处理温度的提高而增大和增强.激发光谱由位于345 nm的弱激发带和位于470 nm强的激发带组成.发射光谱是位于530 nm左右的宽的发射带,归属于Ce3+离子的5d→4f跃迁.激发和发射强度随热处理温度的提高而增强.  相似文献   

4.
采用高温固相法制备了Sm3+/Ho3+掺杂Lu3Al5O12基荧光粉。XRD结果显示:所合成的荧光粉具有单一相石榴石结构。荧光光谱分析表明,在蓝光激发下,Lu3Al5O12:Sm3+样品的发射光谱的峰值波长为568nm和614nm,Sm3+的最佳掺杂摩尔分数为6.3%;Lu3Al5O12:Ho3+发射光谱峰值波长为549nm,Ho3+样品的最佳掺杂摩尔分数为4%。在Sm3+、Ho3+共掺Lu3Al5O12:Sm3+,Ho3+荧光粉中,Sm3+、Ho3+均为发光中心,样品的发射光谱中同时出现单掺Sm3+、Ho3+的特征发射峰。可见,Lu3Al5O12:Sm3+,Ho3+可用作暖白光LED用荧光粉。  相似文献   

5.
采用溶胶-凝胶法,以柠檬酸为络合剂,乙二醇为螯合剂合成了YAG:Ce^3+超细荧光粉.利用X射线衍射、电镜和荧光光谱等测试手段对合成的YAG:Ce^3+样品的结构、形貌和发光性质进行了研究.XRD图谱结果表明:所有样品均为立方相.根据Scherrer公式计算,900℃、1 000℃和1 100℃热处理后样品晶粒的平均粒径分别为69 nm7、2 nm和89 nm.粒子的粒径和衍射峰强度随热处理温度的提高而增大和增强.激发光谱由位于345 nm的弱激发带和位于470 nm强的激发带组成.发射光谱是位于530 nm左右的宽的发射带,归属于Ce^3+离子的5d→4f跃迁.激发和发射强度随热处理温度的提高而增强.  相似文献   

6.
以A1(NO3)3.9H2O、Y(NO3)3.6H2O和Ce(NO3)3.6H2O为氧化剂,尿素为还原剂,采用低温燃烧法合成了Pr3+掺杂的YAG:Ce3+光致发光超细荧光粉,研究了镨离子和尿素的掺杂量对YAG:Ce3+粉体发光性能的影响。结果表明,在450℃的低温条件下,利用低温燃烧法可以制备较纯的Pr3+掺杂的YAG:Ce3+荧光粉;掺杂Pr3+增加红光区的发射峰有利于提高YAG:Ce3+荧光粉的显色性;当Pr3+的掺杂量为0.005 0、尿素的添加量按化合价计算的剂量比为1.2倍时用低温燃烧法所制备的YAG:Ce3+超细荧光粉的发光强度最高。  相似文献   

7.
采用高温固相法制备了YAG:Ce~(3+)荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析。系统地研究了不同种类助熔剂、烧结温度、时间对YAG:Ce~(3+)荧光粉结构、形貌及发光性能的影响。通过调节助熔剂、烧结温度和时间等工艺参数,在不经过破碎、后处理工艺的条件下,制备出了形貌规则、粒度分布均匀、发光性能优良的YAG:Ce~(3+)荧光粉。研究发现在1600℃,保温5个小时,以BaF_2作为助熔剂的条件下,样品的形貌及发光性能均达到最好。  相似文献   

8.
运用高温固相法合成SrBPO_5∶Ho~(3+),用X射线衍射仪(XRD)、能谱仪(EDS)以及荧光光度计(PL)对合成产物的结构、组成和发光性质进行了研究。结果表明:少量掺杂Ho不会影响基质的晶体结构,Ho均匀分布在基质材料中;荧光材料呈现出Ho3+的特征发射,发光区域在绿色区域,当掺杂量为0. 03 mol时发射强度最大;掺杂后计算得到SrBPO_5∶Ho~(3+)的VBM和CBM之间的带隙值为5. 53 e V,相对掺杂前略微减少,且SrBPO_5∶Ho~(3+)体系属于直接带隙结构,有利于发光; Ho的掺杂在费米能级附近引起杂质能级。  相似文献   

9.
采用静电纺丝技术制备了PVP/[Y(NO3)3+Ce(NO3)3+Al(NO3)3]复合纳米纤维,对其进行焙烧,得到了结构新颖的Y3Al5O12:Ce^3+(简称为YAG:Ce^3+)纳米纤维。XRD分析表明,PVP/[Y(NO3)3+Ce(NO3)3+Al(NO3)3]复合纳米纤维为非晶态,经900℃焙烧8h,获得单相石榴石型的YAG:Ce^3+纳米纤维,属于立方晶系,空间群为Ia3d。SEM分析表明,PVP/[Y(NO3)3+Ce(NO3)3+Al(NO3)3]复合纳米纤维表面光滑,直径为210-300nm;YAG:Ce^3+纳米纤维直径为90~125nm,长度大于100μm。荧光光谱分析表明,在460nm蓝光激发下,YAG:Ce^3+纳米纤维发射出波长为525nm的黄光,属于Ce^3+的5D0→7F1跃迁。  相似文献   

10.
采用燃烧法合成红色荧光粉CaO:Eu^3+,并利用x-射线衍射仪(XRD)、电子扫描电镜(SEM)、激光粒径分析仪和荧光光谱(PL—PLE)等研究了样品的结构、形貌、粒度以及煅烧温度和Eu^3+离子掺杂量对样品发光性质的影响。结果表明:掺杂Eu^3+作为发光中心占据了Ca^2+离子的位置,但未改变基质CaO的立方晶型结构;样品颗粒基本上为球形结构,其平均粒径在0.4~3.0μm;Eu^3+离子在晶格中处于两种不同的格位,即立方体心和正交体心,随着煅烧温度和Eu^3+离子掺杂量的提高,样品的最大发射峰由592nm(5D0→7F1)向614nm(5D0→7F2)红移,这是由于立方/正交体心的比例减少以及Eu^3+离子的对称环境的变化造成的。  相似文献   

11.
本文以PbF2为基质,Er^3+为激活剂,Yb^3+为敏化剂,采用水热法,通过严格控制pH值,成功制备了PbF2:Er^3+,Yb^3+上转换发光材料。采用X射线衍射仪和荧光分光光度计分析了样品的结构和发光性能,结果表明,当pH值=4时,产物为立方晶系纯相PbF2,上转换发光性能最佳。在980nm光激发下,样品发射源于Er^3+离子^2H11/2→^4I15/2、^4S3/2→^4I15/2能级跃迁的绿光(520-570nm)和4F9/2→4I15/2能级跃迁的红光(650-680nm)。  相似文献   

12.
采用高温固相法合成Ba2MgSi2O7:Eu^2+绿色荧光粉,研究其发光性能.通过XRD测试样品的晶相结构,荧光分光光度计测试样品的激发和发射光谱,研究激活剂Eu^2+的物质的量对荧光粉发光强度的影响。XRD结果表明,所合成的样品硅酸镁钡即Ba2MgSi2O7晶体结构.光谱分析结果表明,当Eu^2+的物质的量为0.1mol时,Ba2MgSi2O7:Eu^2+样品的发光强度最高.  相似文献   

13.
在一氧化碳还原气氛下,通过高温固相法合成了YAG:Ce3+,Pr3+黄色荧光粉。研究Pr3+的掺杂浓度(X)与助熔剂对该荧光粉光学性能的影响,实验结果表明:当P,的掺杂浓度x≤0.012时,光谱强度随X增大而增强;当x〉O.012时,光谱强度随X增大而减弱。同时还发现光谱的峰值和峰形不受X的影响,主激发峰位于468nm,发射峰位于530rim和610nm。在YAG:Ce3+荧光粉中掺杂Pr3+增加了荧光粉的红色成分。A1F3做助熔剂时,可以提高荧光粉的发光性能。  相似文献   

14.
分别用乙二醇和聚乙二醇作为分散剂,采用络合凝胶法合成YAG:Ce^3+荧光粉.利用X射线衍射仪、扫描电子显微镜、荧光分光光度计对合成的荧光粉进行分析.XRD图谱显示所有的荧光粉均为立方相.采用Scherrer公式分别计算以乙二醇和聚乙二醇为分散剂制备的荧光粉的平均粒径:27.1nm和25.0nm.发射光谱的发射峰为530nm处的一个宽带发射峰,对应的是Ce^3+离子5d→4f跃迁;激发光谱有2个激发峰,分别位于345nm和470nm,对应的是Ce^3+离子^2F5/2→5d和^2F7/2→5d的跃迁.光谱研究结果表明:采用乙二醇制备的样品的发光相对强度大于用聚乙二醇制备的样品的发光相对强度.  相似文献   

15.
对(Ca,Na,Ce)P2O7紫外荧光粉的制备,组成及发光性能进行了研究,实验证明;该荧光粉的最佳组成为「Ca(2-x-6),Na(x),Ce(y)」P2O7,其中x=y=0.185;该荧光粉在254mm紫外照射下,能发射出波长范围为300-400nm,波峰在335nm的紫外光。  相似文献   

16.
17.
以硅酸盐为基质,通过低温燃烧法合成了Sr2SiO4:Dy3+高亮度白光LED用荧光粉。利用XRD和荧光光谱研究合成的荧光粉的结构特性和发光性能。结果表明:合成的荧光粉为斜方晶系,物相较纯。随着Dy3+掺杂浓度的增加,荧光粉的结构没有发生破坏,光谱的形状也没有发生改变。当Dy3+的掺杂浓度为2%,电荷补给剂LiOH的掺杂浓度为5%时,合成的荧光粉发光性能最佳。荧光粉可被352nm的紫外光有效激发,同时发出蓝光和橙光,混合后获得白光。  相似文献   

18.
Eu^3+激活的碱土金属钼酸盐荧光粉合成及其发光性质   总被引:1,自引:0,他引:1  
采用高温固相反应法制备了CaMoO4:Eu,A(A=Li,Na,K)系列和MMoO4:Eu,Li(M=Ca,Sr,Ba,Mg)系列的发光材料,并采用X射线衍射,荧光光谱对这2个系列发光材料的结构及其发光性质进行了对比研究.结果表明,CaMoO4:Eu,A(A=Li,Na,K)系列荧光粉具有相同的结构,均属于四方晶系,具有相似的光谱性质,碱金属离子为Li时发光性能最好.MMoO4:Eu,Li(M=Ca,Sr,Ba,Mg)系列荧光粉中,MgMoO4:Li,Eu为单斜晶系,底心结构,其他3种荧光粉为四方晶系,体心结构.在395nm近紫外光激发下,CaMoO4:Eu,Li发光性能最好.  相似文献   

19.
采用沉淀法合成了YVO4:Eu3+,Bi3+荧光粉,利用XRD,SEM和TEM对样品的结构和形貌进行表征,并用荧光光谱仪测试了样品的激发和发射光谱。X射线衍射图分析表明,所制得的荧光粉与YVO4的物相一致,样品属于体心四方相。其扫描电镜和透射电镜照片显示颗粒为纺锤形,大小比较均匀,长径为250nm左右,短径为100nm左右。在275nm近紫外光激发下,该荧光粉的发光峰分别归属于Eu3+的5 D0→7 F1(596nm),5 D0→7F2(617nm,621nm),5 D0→7F3(654nm),5 D0→7F4(702nm)辐射跃迁。最强发射位于617nm左右,属于红光。研究了Eu3+浓度对样品发光强度的影响。随着Eu3+浓度的增加,发射峰强度增大,当Eu3+摩尔分数为12%时,峰值强度最大。Bi3+对Eu3+的发光有一定的敏化作用,当Bi3+摩尔分数达到5%时,敏化作用最强。  相似文献   

20.
采用高温固相法制备了Li6(La2Ca)Nb2O12:Dy3+荧光粉样品,通过X射线衍射分析了样品的晶体结构,并利用光谱技术研究了样品的光致荧光光谱.光谱分析结果表明,Li6(La2Ca)Nb2O12:Dy3+的激发光谱由两部分组成:一是位于200~290 nm的一个宽带,峰值位于269 nm,属于Nb—O、Dy—O的电荷迁移带的叠加; 二是位于310~500 nm之间的系列尖锐的吸收峰,这些激发峰属于Dy3+f →f跃迁.样品可被近紫外或蓝光LED有效激发.在269 nm激发下,样品在580 nm处有很强的黄光发射,色坐标为(0.470 3,0.492 7).随着Dy3+掺杂浓度的增加,样品的发光强度增强,当Dy3+浓度为10 mol%时出现浓度猝灭.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号