首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
聚芳醚砜酮纤维的热性能   总被引:1,自引:0,他引:1  
采用DSC、TG测定了含联苯结构聚芳醚砜酮 (PPESK)纤维的热性能 ,结果表明 ,纤维的玻璃化温度随砜酮比的增大而提高 ,纤维的起始分解温度大于 463℃。当砜酮比为 15 / 85 ,5 0 / 5 0 ,75 / 2 5时 ,纤维的玻璃化温度分别为 2 5 7.62 ,2 78.64 ,2 79.71℃ ;热分解活化能分别为 15 0 .8,2 19.9,195 .5kJ/mol;热分解反应级数分别为 1,1.76,1级  相似文献   

2.
聚芳醚酮聚芳醚砜和聚醚砜膜的研究   总被引:4,自引:0,他引:4  
  相似文献   

3.
聚芳醚砜酮纺丝溶液流变性能研究   总被引:1,自引:1,他引:0  
研究了含二氮杂萘酮结构聚芳醚砜酮 (PPESK)的 N-甲基吡咯烷硐 (NMP)溶液体系的粘度对浓度、温度和切变速率以及砜酮比的依赖性。结果表明 ,该溶液的粘度随剪切速率的提高而降低 ,为非牛顿流体 ;粘度随溶液浓度的增大而增大 ,与浓度的高次幂成正比 ,随砜酮比的增加而下降 ;温度对粘度的影响服从 Arrhenius公式。用该溶液纺制的纤维经测定力学性能较好。  相似文献   

4.
聚芳醚砜酮溶液凝固相分离的研究   总被引:4,自引:1,他引:3  
研究了聚芳醚砜酮的N-甲基吡咯烷酮溶液在凝固剂作用下的凝固相分离条件,测定了相分离时凝固剂种类、凝固液浓度、凝固温度和磺化处理对凝固液的凝固值和溶剂临界浓度的影响。结果表明水的凝固值最小,是一种强凝固剂;随凝固剂浓度和温度的提高,凝固值增大,临界浓度基本不变;磺化处理能够提高凝固值,从而缓和相分离剧烈程度。  相似文献   

5.
以含二氮杂萘酮结构聚芳醚砜酮(PPESK)为基膜、均苯三甲酰氯为有机相单体、哌嗪与间苯二胺为水相单体通过界面聚合工艺制备了复合膜,研究了不同操作条件下复合膜对环丁砜水溶液的分离浓缩效果,考察了复合膜运行的稳定性与2次浓缩效果.结果表明,在50℃,1.8MPa下聚芳酰胺聚芳醚砜酮复合膜2次浓缩质量浓度10g·L~(-1)的环丁砜溶液,混合浓缩液环丁砜的质量浓度在28~36 g·L~(-1),透过液环丁砜的质量浓度为0.2 g·L~(-1),且13周静态及24 h连续分离操作性能稳定.  相似文献   

6.
以4,4′-二苯氧基二苯砜(DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,无水AlCl3/二氯乙烷(DCE)/N,N-甲基甲酰胺(DMF)为催化溶剂体系,通过低温溶液共缩聚反应,合成系列聚芳醚砜醚酮酮(PESEKKs),用IR、DSC、WAXD、TG等技术对聚合物进行了结构和性能的表征,研究结果表明,随着高分子主链中间位苯基结构单元的增加,对共聚玻璃化转变温度(Tg)和热分解温度(Td)影响不大,熔融温度(Tm)和结晶则逐渐降低,但仍保持良好的耐热性,溶解性等到很大改善。  相似文献   

7.
聚芳醚砜(PES)作为综合性能优良的工程塑料,近年来得到广泛的应用。本文研究了聚合时间、聚合温度、反应物配比对聚芳醚砜产量和分子量的影响,在双酚S/双氯/NaOH摩尔比为1∶1∶2.48、脱水时间2 h、聚合温度230℃、聚合时间8 h的条件下,制备了—OH封端的聚芳醚砜。  相似文献   

8.
聚芳醚酮/含甲基侧基聚芳醚砜醚酮酮的合成与表征   总被引:2,自引:0,他引:2  
以2,2’-二甲基-4,4'-二苯氧基二苯砜(o-CH3-DPODPS)、二苯醚(DPE)和对苯二甲酰氯(TPC)为单体,在无水A1C13、1,2-二氯乙烷和N,N-二甲基甲酰胺存在下,通过低温溶液缩聚反应。合成了一系列新型含甲基侧基的聚芳醚酮/聚芳醚砜无规共聚物。用FT-IR,WAXD,DSC和TG等方法对聚合物进行了表征。结果表明,随着2,2'-二甲基-4,4'-二苯氧基二苯砜含量的增加,共聚物的玻璃化转变温度逐渐提高,熔融温度则逐渐下降。  相似文献   

9.
采用新型聚芳醚砜酮(PPESK)超滤膜为分离介质,以炼油污水为研究对象,测定了膜污染和膜阻力.结果表明,PPESK超滤膜在100 kPa下的初始通量为480 L·m-2·h-1,自身阻力为0.78mm-1;在超滤膜运行过程中,溶液通量随运行时间呈指数衰减,通量衰减由60%增加到95%时,膜污染阻力由0.69nm-1增大到5.68 nm-1,膜污染阻力占总阻力的分数从43.95%增大到86.72%,其中不可逆膜污染阻力大小为0.20nm-1.PPESK超滤膜对迭标炼油污水过滤时,因膜污染造成通量衰减,经化学清洗能够得到较大程度的恢复.  相似文献   

10.
综述了含二氮杂萘酮结构的聚芳醚酮和聚芳醚砜的结构性能及其合成、改性、应用研究进展。  相似文献   

11.
采用逐步聚合方法制备了新型特种工程塑料含二氮杂萘酮结构的聚芳醚砜酮[PPESK(1/1)]和聚芳醚砜(PPES).利用热失重(TGA)分析仪,氮气氛围中,多重加热扫描速率下的不定温法对PPESK(1/1)及PPES进行热分解动力学研究.根据Satava法得出,聚合物PPESK(1/1)分解反应机理为随机成核和随后生长,反应级数n=1;而聚合物PPES的热分解反应机理为相界面反应模式,反应级数n=2.同时采用经典动力学方程Friedman、Kissinger-Akahira-Sunose(KAS)及Ozawa方程计算了热分解动力学参数(Ea,lnZ).重点考察升温速率、不同酮/砜比对PPESK(1/1)热稳定性影响,并且根据得到的动力学参数推测其在高温使用条件下的使用寿命及对热分解反应过程中“动力学补偿效应”(KCE)进行分析.  相似文献   

12.
聚醚醚酮(PEEK)作为一种半结晶高分子材料,具有耐热等级高、耐辐射、耐化学药品、冲击强度高、耐磨性和耐疲劳性好、阻燃、电性能优异等特点,其综合性能之高使其在问世之后一度被称为超耐热高分子材料,在航空航天、能源、电子、汽车、机械、交通等领域迅速得到了广泛应用,并促进了宇航、电子、通讯等行业的传统产品实现更新换代.  相似文献   

13.
采用沸腾床干燥机,通过测定不同工艺条件下的干燥曲线和干燥速率曲线,研究了PES树脂的干燥特性。结果表明,进风温度和物料层厚度对干燥过程都有明显的影响,且PES干燥的动力学模型符合Page方程,并得到本试验条件下的动力学方程。实验方法与工业干燥过程接近,实验结论对PES的工业化装置选型及干燥过程参数控制具有重要参考意义。  相似文献   

14.
以4,4’-二(2,6-二甲基苯氧基)三苯二酮(o-M2DPOTPK)、1,4-二苯氧基苯(DPB)为单体,以1,2-二氯乙烷(DCE)为溶剂,无水三氯化铝和N,N-二甲基甲酰胺(DMF)为复合催化溶剂体系,与对苯二甲酰氯(TPC)低温缩聚,合成了一系列高摩尔质量含双邻位甲基取代结构的聚芳醚酮酮醚酮酮(M-PEKKEKK)/聚芳醚醚酮酮(PEEKK)三元无规共聚物,并对聚合物进行了表征。  相似文献   

15.
通过三步反应合成新的含氟双酚单体3,4-二氟苯基对苯二酚,由该含氟双酚单体、4-氟苯基对苯二酚、邻苯基对苯二酚分别与4,4′-二氟二苯酮、4,4′-二氯二苯砜经亲核缩聚反应,制备了一系列新型聚芳醚酮和聚芳醚砜。采用 FT-IR、DSC、TGA及XRD手段等对聚合物的结构和性能进行了表征和研究,结果表明:合成的聚芳醚酮和聚芳醚砜具有优异的耐热性能,玻璃化转变温度分别在150~159 ℃和177~196 ℃之间,氮气中5 %热失重温度分别在527 ℃和507 ℃以上。合成的聚芳醚酮和聚芳醚砜具有良好的溶解性,室温下能溶解在N-甲基吡咯烷酮、二甲基乙酰胺、氯仿等有机溶剂中。  相似文献   

16.
综述了特种工程塑料聚芳醚酮改性研究的进展,主要介绍了聚芳醚酮结构改性的三大类方法:主链上引入其他基团、主链上引入大侧基及共聚改性。研究表明,通过结构改性可以在保持聚芳醚酮高的耐热性能和力学性能的基础上有效地改善其加工性能和在有机溶剂中的溶解性。同时简介了聚芳醚酮与聚酰亚胺、聚醚砜、聚苯硫醚等高性能树脂以及不同种类的聚芳醚酮间共混改性的研究状况。  相似文献   

17.
氯甲基化/季铵化新型聚芳醚砜酮超滤膜的研制   总被引:3,自引:0,他引:3  
张守海  蹇锡高  苏仪  张丽荣 《水处理技术》2004,30(3):125-127,143
本文对含二氮杂萘结构聚芳醚砜酮进行改性制得氯甲基化聚芳醚砜酮。选用N-甲基一2-吡咯烷酮作制膜溶剂,依据正交设计方法制得了一系列氯甲基化聚芳醚砜酮超滤膜。考察了聚合物浓度、添加剂种类和添加量以及制膜蒸发时间等对膜性能的影响。将氯甲基化聚芳醚砜酮超滤膜浸入三甲胺溶液进行季铵化反应,得季铵化聚芳醚砜酮超滤膜。并考察了膜的抗污染性。  相似文献   

18.
介绍了聚芳醚酮的合成路线与性质,并讨论了其改性的研究方向和进展,例如利用共聚共混对其改性,在聚 芳醚酮的主链中引入大的侧基破坏其规整性,以及研制含氟的新型聚合物。  相似文献   

19.
介绍了聚芳醚酮的物理化学性质,主要对近年来研究的热点超支化聚醚酮改性、化学改性和磺化改性等进行了综述.  相似文献   

20.
以4,4’-二氯二苯砜、4,4’-二羟基二苯砜和2,4-二羟基二苯砜为单体,通过缩聚合成一系列主链含异构体醚键单元的聚芳醚砜共聚物,利用核磁共振碳谱(13C NMR)、差示扫描量热分析(DSC)和高压毛细管流变仪对产物进行了测试和分析。对比不同产物的熔体黏度、玻璃化转变温度和力学性能,发现随着共聚单元含量的增加,聚芳醚砜共聚物的流动性逐渐提高,玻璃化转变温度逐渐降低,并且屈服点伸长率和缺口冲击强度均逐渐提高。这一结果对实际应用中提高聚芳醚砜树脂流动性和韧性、降低热加工温度等具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号