首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniformly porous composites with 3-D network structure (UPC-3D) have been recently developed via a pyrolytic reactive sintering process, which takes advantage of the evolved CO2 gas from a decomposing carbonate source (e.g., dolomite, CaMg(CO3)2) and does not require any additional pore-forming agent nor long-time burning-out process. Through liquid formation via LiF doping, strong necks are formed between constituent particles before completion of the pyrolysis of carbonate, resulting in the formation of a strong 3-D network structure. The pore size distribution is very narrow (with typical pore size: ∼1 μm), and the porosity was controllable (∼30–60%) by changing the sintering temperature. This article presents the development details of UPC-3D, and reports the recent findings in CaZrO3/MgAl2O4 system, which will be one of the more promising systems for practical applications.  相似文献   

2.
Porous CaZrO3/MgO composites with a uniform three-dimensional (3-D) network structure have been successfully synthesized using reactive sintering of highly pure mixtures of natural dolomite (CaMg(CO3)2) and synthesized zirconia powders with LiF additive. Equimolar dolomite and zirconia powders doped with 0.5 wt% LiF were cold isostatically pressed at 200 MPa and sintered at 1100–1400°C for 2 h in air. Through the liquid formation via LiF doping, strong necks were formed between constituent particles before completion of the pyrolysis of dolomite, resulting in the formation of a 3-D network structure. During and after the formation of the network structure, CO2 was given off to form a homogeneous open-pore structure. The pore-size distribution was very narrow (with pore size ∼ 1 μm), and the porosity was controllable (e.g., ∼30%–50%) by changing the sintering temperature. The porous composites can be applied as filter materials with good structural stability at high temperatures.  相似文献   

3.
Porous Al2O3/20 vol% LaPO4 and Al2O3/20 vol% CePO4 composites with very narrow pore-size distribution at around 200 nm have been successfully synthesized by reactive sintering at 1100°C for 2 h from RE2(CO3)3· x H2O (RE = La or Ce), Al(H2PO4)3 and Al2O3 with LiF additive. Similar to the previously reported UPC-3Ds (uniformly porous composites with a three-dimensional network structure, e.g. CaZrO3/MgO system), decomposed gases in the starting materials formed a homogeneous open porous structure with a porosity of ∼40%. X-ray diffraction, 31P magic-angle spinning nuclear magnetic resonance, scanning electron microscopy, and mercury porosimetry revealed the structure of the porous composites.  相似文献   

4.
Porous Cr3C2 grains (∼300 to 500 μm) with ∼10 wt% of Cr2O3 were prepared by heating a mixture of MgCr2O4 grains and graphite powder at 1450° to 1650°C for 2 h in an Al2O3 crucible covered by an Al2O3 lid with a hole in the center. The porous Cr3C2 grains exhibited a three-dimensional network skeleton structure. The mean open pore diameter and the specific surface area of the porous grains formed at 1600°C for 2 h were ∼3.5 (μm and ∼6.7 m2/g, respectively. The present work investigated the morphology and the formation conditions of the porous Cr3C2 grains, and this paper will discuss the formation mechanism of those grains in terms of chemical thermodynamics.  相似文献   

5.
Flexural delamination experiments were used to evaluate the mechanical performance of thermochemically stable alumina–fluoromica laminates. Hot-pressed, precracked laminate specimens, in which two MgAl2O4-spinel-coated alumina substrates were separated by a thin layer of fluorophlogopite (KMg3(AlSi3)O10F2), were tested in fourpoint flexure at room temperature. Two types of mechanical response were observed: steady-state delamination and brittle failure. Microstructural analysis showed that the delamination response was associated with fine (≤5 μm) grains of the mica; the brittle response occurred when the mica interphase consisted of large (>30 μm) grains that bridged the interphase. The steady-state strain-energy release rate ( G ss) measured on the graceful, delaminating beams was 9.1 ± 0.4 Jm–2 for randomly oriented ∼ 5–μm grains but only 2.8 ± 0.2 Jm–2 for ∼1–μm grains that were aligned with easy-cleavage planes parallel to the laminate interfaces. The results suggested that debonding of the specimens occurred via cleavage of the mica grains. Observation of delamination cracks confirmed this point: propagation occurred within the fluoromica interphase rather than along the spinel/alumina or spinel/fluorophlogopite interfaces. The mechanical feasibility of laminate specimens without the protective spinel coating on the substrate containing the notch was also tested to address an issue related to the preparation of alumina fiber/mica interphase/alumina matrix composites. The delamination response again occurred for the case of a fine-grained mica interphase.  相似文献   

6.
We report here the fabrication of transparent Sc2O3 ceramics via vacuum sintering. The starting Sc2O3 powders are pyrolyzed from a basic sulfate precursor (Sc(OH)2.6(SO4)0.2·H2O) precipitated from scandium sulfate solution with hexamethylenetetramine as the precipitant. Thermal decomposition behavior of the precursor is studied via differential thermal analysis/thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffractometry, and elemental analysis. Sinterability of the Sc2O3 powders is studied via dilatometry. Microstructure evolution of the ceramic during sintering is investigated via field emission scanning electron microscopy. The best calcination temperature for the precursor is 1100°C, at which the resultant Sc2O3 powder is ultrafine (∼85 nm), well dispersed, and almost free from residual sulfur contamination. With this reactive powder, transparent Sc2O3 ceramics having an average grain size of ∼9 μm and showing a visible wavelength transmittance of ∼60–62% (∼76% of that of Sc2O3 single crystal) have been fabricated via vacuum sintering at a relatively low temperature of 1700°C for 4 h.  相似文献   

7.
Powders of composition Ba0.65Sr0.35TiO3 were prepared from catecholate precursor phases, BaTi(C6H4O2)3 and SrTi (C6H4O2)3. The physical and chemical properties of the base powders, and those doped with 0.2 wt% manganese, are reported in detail. The dimensions of the primary particles in the starting powders were of the order of 20–50 nm, but the occurrence of abnormal grain growth during sintering promoted grain sizes in the ceramic of up to ∼100 μm. In some microstructures, coarse grains coexisted with a ∼1-μm fraction to produce a characteristic bimodal grain size distribution. By contrast, under comparable sintering conditions, namely 1350° or 1400°C for 1 h, grain growth in Mn-doped samples was suppressed, leading to uniform microstructures with a grain size of only a few micrometers. The pellet densities were nevertheless similar, 97% of theoretical in both doped and undoped samples. No significant difference was observed in the dielectric permittivity of the two compositions: the peak relative permittivity occurred at ∼20°C, with a maximum value of ∼22 000.  相似文献   

8.
MgAl2O4 spinel was successfully synthesized using a mechanochemical route that avoided the formation and calcination of its precursors at high temperatures. The method involved a single step in which γ-Al2O3–MgO, AlO(OH)–MgO, and α-Al2O3–MgO mixtures were milled at room temperature under air atmosphere. The formation of MgAl2O4 occurred faster with γ-Al2O3 than with AlO(OH) or α-Al2O3. After 140 h, the mechanochemical treatment of the γ-Al2O3–MgO mixture yielded 99% of MgAl2O4.  相似文献   

9.
NiAl/10-mol%-ZrO2(3Y) composites of almost full density have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The former intermetallic compound, which contains a trace amount of Al2O3, has been prepared via self-propagating high-temperature synthesis. The composite microstructures are such that tetragonal ZrO2 (∼0.2 μm) and Al2O3 (∼0.5 μm) particles are located at the grain boundaries of the NiAl (∼46 μm) matrix. Improved mechanical properties are obtained: the fracture toughness and bending strength are 8.8 MPa·m1/2 and 1045 MPa, respectively, and high strength (>800 MPa) can be retained up to 800°C.  相似文献   

10.
Successful net-shape sintering offers a significant advantage for producing large or complicated products. Porous Si3N4 ceramics with very low shrinkage were developed, in the present investigation, by the addition of a small amount of carbon. Carbon powders (1–5 vol%) of two types, with different mean particle sizes (13 nm and 5 μm), were added to α-Si3N4−5 wt% Y2O3 powders. SiC nanoparticles formed through reaction of the added carbon with SiO2 on the Si3N4 surface or with the Si3N4 particles themselves. Such reaction-formed SiC nanoparticles apparently had an effective reinforcing effect, as in nanocomposites. Sintered Si3N4 porous ceramics with a high porosity of 50%–60%, a very small linear shrinkage of ∼2%–3%, and a strength of ∼100 MPa were obtained.  相似文献   

11.
Different grades of stoichiometric and non-stoichiometric dense magnesium aluminate spinel (MgAl2O4) grains were prepared by a conventional double-stage firing process using two types of alumina and four types of magnesia raw materials. The MgAl2O4 spinel formation was found to be highly influenced by CaO and moisture present in the precursor oxides as confirmed by thermogravimetry (TG), differential thermal analysis (DTA), and X-ray diffraction (XRD) techniques. The Fourier transform-infrared spectroscopy (FTIR) study of the precursor oxides revealed the presence of moisture. Influence of alumina and magnesia composition on the densification behavior of MgAl2O4 spinels was assessed by characterizing bulk density (BD), apparent porosity (AP), water absorption (WA) capacity, and the microstructures of the stoichiometric, the magnesia-rich, and the alumina-rich spinels sintered at 1650°C for 1 h. Sintering studies indicate that to obtain dense stoichiometric spinel grains with >3.35 g/mL BD, <2.0% AP, and <0.5% WA, the spinel powder should possess a median particle size of <2 μm, CaO content of >0.9%, compact (green) density of >1.95 g/mL, and spinel content of >90%. Among various spinels synthesized, the magnesia-rich spinels exhibited superior properties in terms of high BD, low percentage of AP, and low WA capacity, whereas alumina-rich spinels showed inferior properties. Stoichiometric spinels exhibited an average grain size of 10 μm whereas alumina-rich spinels with 90% alumina had an average grain size of 20 μm. The increase in holding time at higher temperatures enhanced the sintering properties of the spinels, particularly the magnesia-rich spinels. Further, raw mixtures having >0.9% CaO exhibited better sintered properties as compared with others.  相似文献   

12.
Pressureless sintering studies have been conducted for excess Al2O3, stoichiometric, and excess MgO compositions of MgAl2O4 at 1500-1625°C. Initial powders of various compositions are prepared by solid-state reaction of MgO and Al2O3. A Brouwer defect equilibrium diagram is constructed that assumes intrinsic defects of the Schottky type. The densification rate derived from sintering kinetics is compared with the compositions investigated when the concentration is converted to the activity of the two oxide components in MgAl2O4. The grain-size exponent of p similar/congruent 3 suggests that densification takes place by a lattice-diffusion mechanism in the solid state. Determined activation enthalpies of 489-505 kJmol-1 are close to those obtained from oxygen self-diffusion derived in previous sintering studies. It is, therefore, proposed that oxygen lattice diffusion through vacancies is the rate-controlling mechanism for the sintering of nonstoichiometric MgAl2O4 compositions. The discrepancy between densification-rate ratios in experimental results and oxygen vacancy concentration in the Brouwer diagram is accounted for by the defect associates formed in the nonstoichiometric compositions.  相似文献   

13.
Densification of Calcia-Stabilized Zirconia with Borates   总被引:1,自引:0,他引:1  
Densification studies of submicrometer ZrO2 powders stabilized with 6.5 wt% CaO (CSZ) showed borate additions (1 to 10 wt%) to be effective sintering aids. Estimated densities >99% of theoretical were obtained on sintering at 1200°Cfor 4 h with 2 wt% B2O3 or 5 wt% CaO·2B2O3 additions to the CSZ powders. Average grain sizes obtained were typically <1 μm. Partial development of a monoclinic ZrO2 phase was observed in the sintered samples. The amount of this phase varied from ∼7 to 75 wt% and was approximately linearly dependent on the additive concentration. The effect was most marked for the B2O3 additions. Development of the monoclinic phase was attributed to progressive leaching of Ca from the CSZ phase by B2O3, in effect partially destabilizing the ZrO2.  相似文献   

14.
An aluminum/MgAl2O4 in situ metal matrix composite has been synthesized using silica gel containing ∼98% SiO2 in an Al–5Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation have been discussed in detail. A transition phase of composition between MgO and MgAl2O4 has been detected in the SEM-EDS analysis of the particles extracted from the composite by a 25% NaOH solution. This confirms the gradual transformation of MgO to MgAl2O4 by the reaction 3SiO2( s )+2MgO( s )+4Al( l )→2MgAl2O4( s )+3Si( l ). The stoichiometry, n , of MgAl2O4 has been found to sustain close to 1 and the crystallite growth of MgAl2O4 has been stopped at D ∼30 nm in the composites held at 750°C up to 10 h.  相似文献   

15.
Carbon nanofiber (CNF)-dispersed B4C composites have been synthesized and consolidated directly from mixtures of elemental raw powders by pulsed electric current pressure sintering (1800°C/10 min/30 MPa). A 15 vol% CNF/B4C composite with ∼99% of dense homogeneous microstructures (∼0.40 μm grains) revealed excellent mechanical properties at room temperature and high temperatures: a high bending strength (σb) of ∼710 MPa, a Vickers hardness ( H v) of ∼36 GPa, a fracture toughness ( K I C ) of ∼7.9 MPa m1/2, and high-temperature σb of 590 MPa at 1600°C in N2. Interfaces between the CNF and the B4C matrix were investigated using high-resolution transmission electron microscopy, EDS, and electron energy-loss spectroscopy.  相似文献   

16.
Spinel platelets were formed from a powder mixture of 3–5 μm wide and 0.2–0.5 μm thick α-Al2O3 and 1–8 μm (average 3 μm) MgSO4 heated 2 h at 1200°C. The hexagonal platelet shape of the original α-Al2O3 platelet was maintained in the spinel, although their size was slightly increased and their surface roughened. When a mixture of α-Al2O3 platelets and MgO powder was heated 3 h at 1400°C, the spinel formed lost the platelet morphology of the alumina.  相似文献   

17.
Transparent polycrystalline Nd:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy-dispersive spectroscopy to be uniform throughout the samples. The in-line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.  相似文献   

18.
The Displacive Compensation of Porosity method for fabricating dense, shaped ceramic/metal composites at modest temperatures is demonstrated. In this process, liquid-metal/solid-ceramic displacement reactions are used to generate more ceramic (by volume) than is consumed, so that pores within a ceramic preform can be filled with the new ceramic phase (i.e., densification without sintering). Dense, lightweight MgO/Mg-Al composites (74–86 vol% oxide) and higher-melting, co-continuous MgAl2O4/Fe-Ni-Al-bearing composites (42–59 vol% oxide) have been produced via the pressureless infiltration and reaction of magnesium-bearing liquids with porous preforms of Al2O3 and NiAl2O4+Fe, respectively, at temperatures of 900°−1000°C. The composites are relatively tough and retain the shapes and dimensions (to within a few percent) of the starting preforms.  相似文献   

19.
Al2O3-MoSi2 composites were prepared by reactive hot pressing using molybdenum, aluminum, and mullite powders as precursors. The Gibbs free energy was highly negative for the composite-forming reaction, which indicated that the products were stable relative to the reactants. After the reaction, the composites had high relative density, ∼96%. Based on the composite-forming reaction, the composites should have contained 18 vol% MoSi2 in an Al2O3 matrix. Scanning electron microscopy revealed that the MoSi2 inclusions were elongated, with an average thickness of ∼5 μm and inclusion lengths that ranged from 5 to 50 μm. Average composite strength was 467 MPa, and toughness was 3.7 MPa·m1/2.  相似文献   

20.
The microstructures and mechanical properties of continuous porous SiC–Si3N4 composites fabricated by multi-pass extrusion were investigated, depending on the amount of Si powder added. Si powder with different weight percentages (0%, 5%, 10%, 15%, 20%) was added to SiC powder to make raw mixture powders, with 6 wt% Y2O3–2 wt% Al2O3 as sintering additives, carbon (10–15 μm) as a pore-forming agent, ethylene vinyl acetate as a binder, and stearic acid (CH3(CH2)16COOH) as a lubricant. In the continuous porous SiC–Si3N4 composites, Si3N4 whiskers like the hairs of nostrils were frequently observed on the wall of the pores. In this study, the morphology of Si3N4 whiskers was investigated with the nitridation condition and silicon addition content. In composites containing an addition of 10 wt% Si, a large number of Si3N4 whiskers were found at the continuous pore regions. In the sample to which 15 wt% Si powder was added, a maximum value of about 101 MPa bending strength and 57.5% relative density were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号