首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
针对大庆油田外围地区复杂泥质砂岩储层解释难的问题,介绍了泥质砂岩三孔隙度理论模型研究,以岩心分析资料为基础,明确了应用压汞和核磁共振资料划分三种孔隙度的方法;建立了三孔隙水导电理论模型、三孔隙组分解释方法,在此基础上开展了储层参数的测井解释方法研究,实现了应用岩心分析资料动态确定模型中饱和度参数,该模型在大庆外围地区部分井中应用,针对低电阻率油层、压裂产水层的解释.见到了较好的应用效果。  相似文献   

2.
海相油气藏的油层与水层电阻率对比度低,直接用阿尔奇方法难以实现对其束缚水饱和度和含水饱和度的精确计算。为了解决该问题,从地质因素分析入手,根据岩心、测井等资料,结合低阻油层的测井响应特征,探索海相低阻油层的成因机理,并在主控因素分析的基础上,建立了储层饱和度精细评价模型。研究结果表明:海绿石的束缚流体特性和附加导电性,是导致其形成低阻油层的主控因素;基于主控成因的束缚水饱和度计算模型和基于导电因素校正的含水饱和度计算模型所得出的低阻油层的饱和度,与岩心压汞实验分析得出的束缚水饱和度进行对比,吻合度较高。将基于导电因素校正的含水饱和度计算模型应用于Oriente盆地海相砂岩低阻储层综合评价中,提高了解释符合率和储层参数解释精度,取得了较好的应用效果,验证了该含水饱和度计算方法的有效性。  相似文献   

3.
宏观导电机理下的泥质砂岩含水饱和度解释模型   总被引:3,自引:1,他引:3  
认为泥质砂岩的导电体积由两部分组成,即完全被束缚水占据的微孔隙(孔喉半径小于0.1μm,其中的流体不能渗流)导电体积和有效孔隙中被可动水、束缚水占据部分的导电体积,泥质砂岩的整个导电响应为二者之和,但二者导电体的导电特性不同,各有其不同的几何因子。考虑成岩过程中地层水的变化和阳离子的交换吸附作用,提出泥质砂岩含水饱和度的双孔隙导电体积解释模型,模型所有特征参数均可由测井解释获得,并有明确的地质和物理意义,可与岩心数据对比。应用该模型解释胜利油区孤东油田3口井的馆陶组泥质砂岩含水饱和度,解释结果与其油基钻井液取心分析的含水饱和度数据对应良好。  相似文献   

4.
为了解决渤海新近系黏土附加导电引起的低阻油层含水饱和度计算精度较低的难题,提出了一种针对黏土附加导电效应校正的低阻油层含水饱和度计算方法。根据核磁共振-阳离子交换量联测实验,建立核磁共振测井黏土束缚水计算模型,将黏土束缚水计算结果带入扩散双电层理论模型得到阳离子交换量,进而校正黏土附加导电的影响,最终采用以扩散双电层理论为基础的泥质砂岩饱和度计算模型精确计算低阻油层含水饱和度。结果表明,对于渤海新近系黏土附加导电成因的低阻油层,新模型计算结果相比传统阿尔奇模型法精度提高7.7%~32.3%,提高了含水饱和度计算精度。  相似文献   

5.
三水导电模型是在双水模型的基础上发展起来的。模型基于岩石的导电是自由水、微孔隙水和粘土水并联而成的理论。与传统的导电模型相比,三水导电模型考虑的因素更全面,适用于泥质砂岩储层,对低阻油层和压后产水层均有效果,提高了含水饱和度的计算精度。利用该模型对大庆西部地区部分井进行了处理解释,见到了较好的应用效果。  相似文献   

6.
张志存  董丽华 《测井技术》2006,30(2):109-112
以泥质砂岩导电性实验和简化的岩石导电模型为基础,分析了泥质砂岩电阻率影响因素.确定了泥质附加导电的大小.淡水条件下的泥质附加导电性的大小不但与泥质体积有关,而且与地层水电阻率、孔隙度的大小有关,据此给出了一种简单的含水饱和度计算方法.实际应用表明,所给出的含水饱和度计算方法简便易行,泥质校正合理,所提供的含水饱和度比较准确,可以推广应用.  相似文献   

7.
砂岩油气层的低电阻率可能是由于富含分散粘土、层状泥质、高束缚水、高矿化度水、骨架导电等因素综合引起的,因此有必要建立一种适用于骨架导电且同时含分散粘土和层状泥质砂岩解释的通用电阻率模型,以提高复杂泥质砂岩储层含水饱和度的解释精度。基于层状泥质与分散粘土砂岩并联导电的观点,而分散粘土砂岩的导电可用粘土包裹颗粒电阻率模型进行描述,从而建立了考虑分散粘土和层状泥质同时存在的含油气泥质砂岩粘土包裹颗粒通用电阻率模型;通过2组分散泥质砂岩岩样实验测量数据和1组层状泥质砂岩测井资料的测试,表明该模型既适用于分散粘土砂岩地层解释又适用于层状泥质砂岩地层解释;利用建立的混合泥质砂岩粘土包裹颗粒电阻率模型,对海拉尔盆地高泥地区的苏1、苏3井进行处理,并将模型计算的含水饱和度与试油结果进行对比,结果表明模型计算的含水饱和度是合理的,故本模型适用于含油气复杂泥质砂岩地层解释。  相似文献   

8.
大庆G地区葡萄花油层具有高泥、复杂孔隙结构特征。建立该区葡萄花油层油水相对渗透率与电阻率之间关系必须考虑泥质对于岩石导电性以及渗流的影响。引入"三水"概念,将泥质岩石总孔隙水分成可动水、微孔隙水和黏土水,将可动水孔隙等效为n根毛细管组成,结合泊肃叶方程和达西定律,推导水相相对渗透率与含水饱和度及可动水流动等效曲折度之间的关系式。利用三孔隙导电模型推导只有可动流体孔隙存在的岩石电阻率增大系数与含水饱和度及可动水导电等效曲折度之间的关系式。再依据可动水水流与电流流动相似性原理建立泥质岩石水相相对渗透率与含水饱和度及电阻率增大系数之间的关系。依据可动流体孔隙各组分体积等量关系以及比面积概念推导出水相相对渗透率与油相相对渗透率关系式,得出泥质岩石油相相对渗透率与含水饱和度及电阻率增大系数之间的关系式。设计了岩石物理实验,保证储层孔隙结构和泥质含量在岩电和压汞实验测量中的一致性。利用泥质岩样的压汞实验数据根据Burdine模型获得水相和油相相对渗透率实验关系曲线,利用同一泥质岩样的岩电实验数据根据三孔隙导电模型获得假定只有流动孔隙存在的岩石电阻率增大系数值。泥质岩石油水相对渗透率与电阻率关系模型实验数据拟合,证明建立的泥质岩石油水相对渗透率与电阻率关系模型能够准确求取储层相对渗透率,可用于高含泥储层产水率测井解释。  相似文献   

9.
混合泥质砂岩通用电阻率模型研究   总被引:1,自引:0,他引:1  
宋延杰  石颖  张庆国 《测井技术》2004,28(2):118-123
基于层状泥质与分散泥质砂岩的并联导电,而分散泥质砂岩导电性等效于分散粘土和地层水为一种导电液体的纯砂岩,并考虑到在低地层水电导率(Gw)范围内分散粘土电导率(Ccl)随Gw增大而增大,建立了混合泥质砂岩通用电阻率模型.通过对该模型的影响因素分析,发现泥质分布形式对模型计算的含水饱和度有很大影响;只有Ccl变化时,地层电导率(G1)与有效含水饱和度(Sw)关系曲线的曲率相近;随Sw增大,胶结指数m对Ct与S关系曲线的影响增大,而饱和度指数n对Ct与Sw关系曲线的影响减小.通过2组分散泥质砂岩岩样实验测量数据和1组层状泥质砂岩测井资料的测试,表明该模型既适用于分散泥质砂岩地层解释又适用于层状泥质砂岩地层解释,给出的电阻率模型为通用电阻率模型.利用建立的混合泥质砂岩通用电阻率模型对海拉尔盆地高泥地区的苏1、苏3井进行处理,并将模型计算的含水饱和度与试油结果进行对比,结果表明模型计算的含水饱和度是合理的.本模型适用于高泥地区的泥质砂岩地层解释.  相似文献   

10.
基于层状泥质与分散泥质砂岩并联导电理论,以及悬浮于电解液中三维周期排列带电球体导电理论,建立了分散泥质和层状泥质同时存在的混合泥质砂岩通用双电层电导率理论模型.分析了模型影响的因素.结果表明,随总含水饱和度的增大,分散枯土阳离子交换容量、胶结指数对混合泥质砂岩电导率与总含水饱和度关系曲线的影响增大;而饱和度指数对混合泥质砂岩电导率与总含水饱和度的关系曲线的影响在总含水饱和度较大时随总含水饱和度的增大而减小.通过2组分散泥质砂岩岩样和1组混合泥质砂岩岩样实验测量数据计算,表明该模型既适用于分散泥质砂岩地层解释,又适用于层状泥质砂岩地层解释,同时还适用于含有分散泥质和层状泥质的混合泥质砂岩地层解释.  相似文献   

11.
通过M6断块19块中低孔隙度渗透率砂岩样品的岩电实验结果得出,地层因素和孔隙度总体表现出非阿尔奇关系的特征,直接沿用Archie公式计算含水饱和度不准确。在Archie公式的基础上,分析了岩电参数m、n的变化规律,当n为定值时,认为m是影响饱和度精度的关键参数,在实验结果中归纳出m受无效导电孔隙(有效孔隙与有效导电孔隙的差值)的影响较大,提出利用无效孔隙求取m,进而提高Archie公式求取饱和度的精度。基于等效岩石组分理论对岩石导电性的影响,利用遗传算法求解方程组中每块样品的比例系数k和临界饱和度Swc,总结出变化规律,依据EREM模型采用迭代法得到相应的饱和度。通过对比3种方法求取的结果,结合试油层段的束缚水饱和度,表明EREM模型得到的含水饱和度最接近实际地层情况,而变参数Archie公式计算的结果次之。研究认为EREM模型更适合于中低孔隙度渗透率砂岩储层的饱和度计算。  相似文献   

12.
陆梁油田白垩系低阻油层的地球化学识别   总被引:1,自引:0,他引:1  
低阻油气层是指油气层的电阻率指数小于3.0,含水饱和度大于50%,或者说油气层的电阻率小于本油区正常油气层电阻率的下限值,这类油气层在我国很多油田均有发现。因引起低阻油气层的因素很多,如储层岩石中的导电矿物质量分数、储层孔隙结构、地层水矿化度及泥浆侵入程度等,给测井解释带来很多困难。以准噶尔盆地腹部陆梁油田白垩系油层为例,利用地球化学方法,如饱和烃色谱、沥青"A"质量分数、储层荧光及储层物性来识别油气层,它避开了上述因素的影响,只与储层流体的化学性质有关,可用于低阻油气层及薄油层的识别。  相似文献   

13.
基于岩石电阻率参数研究致密砂岩孔隙结构   总被引:4,自引:0,他引:4  
低孔低渗致密砂岩储层孔隙结构特征是影响其油气储集能力和采收率的重要因素,故对其孔隙结构特征进行研究具有重要的意义。文章主要探讨了利用电阻率参数开展该类储层孔隙结构特征研究的方法。基于铸体薄片和压汞实验数据反映出的此类储层孔隙结构的特征,选取毛细管束模型推导并建立了致密砂岩储层孔隙结构特征参数计算模型,并结合岩电实验数据对模型进行了验证。结果表明:从电阻率参数计算得到的岩石孔隙结构参数能较好地反映岩石的孔隙结构特征,利用电阻率计算得到的岩石孔隙结构参数是随含水饱和度变化而变化的量,其变化量及变化的速率能够反映出储集层开采过程中油气藏内部流体的分布变化;利用井下不同时刻实测电阻率参数计算得到的岩石的孔喉半径,仅代表测井时刻地层内导电流体所占据的孔隙空间的半径,而计算得到的岩石迂曲度也只反映了当前状态下导电流体的分布状况。  相似文献   

14.
碳酸盐岩储集层微裂缝的识别与表征   总被引:1,自引:0,他引:1  
采用基于孔隙几何形状与结构的岩石分类方法,利用碳酸盐岩储集层A和碳酸盐岩储集层B岩石样品的常规岩心、特殊岩心分析数据和薄片照片,对岩石样品进行分类,识别并表征碳酸盐岩储集层岩石样品中的微裂缝。碳酸盐岩储集层A的各类岩石中均发育微裂缝;而碳酸盐岩储集层B中,只有孔隙度为1%~11%、孔洞较少、硬度为中硬—硬的部分类型岩石样品中发育微裂缝。建立确定各类岩石截止孔隙度的方法,以区分发育导流型微裂缝与不发育导流型微裂缝的岩石样品,分析导流型微裂缝在提高渗透率方面的作用。基于渗透率和初始含水饱和度的关系,结合基于孔隙几何形状与结构的岩石分类方程,筛选出发育导流型微裂缝的特殊岩心分析数据建立渗透率预测方程,成功预测了含有导流型微裂缝的岩石样品的渗透率。  相似文献   

15.
含油饱和度计算是油气资源量评价中不可或缺的重要参数,现有饱和度模型均是针对纯砂岩或泥质砂岩,对泥页岩地层而言没有现成的模型可以遵循,从而使得其含油饱和度计算缺乏方法模型和理论依据。沾化凹陷罗69井沙三段下亚段泥页岩层段主要储集空间为裂缝和微孔隙,结合实验室测量的泥页岩地层孔隙结构指数和饱和度指数分别对微孔隙和裂缝的导电机理进行了分析,利用阿尔奇公式计算了泥页岩地层的含油饱和度,通过与密闭取心资料进行对比,达到了数值上的良好统一。研究表明,阿尔奇公式的核心物理学模型是对岩石导电特性主要影响因素及其相关关系的诠释,它是以理论分析建立的物理学模型为基础,通过实际岩心实验验证形成的实用方程,因此在针对泥页岩地层的精细解释及优化测井理论尚未完善之前,可以通过阿尔奇扩展模型计算泥页岩地层的含油饱和度,其精度可满足计算需求。  相似文献   

16.
近几年在黄河口凹陷南部缓坡带馆陶组获得了一系列的油层发现,其中含有大量的低电阻率油层,且存在高产能的低电阻率油层,具有一定的勘探潜力,由于低阻油层与水层电阻率相当,给测井评价带来了较大的难度。综合岩心、薄片等资料,从粒度、泥质含量及黏土矿物、孔隙结构、束缚水饱和度、导电矿物等5个方面对该区馆陶组低阻油层微观成因机理进行了系统的研究。通过低阻储层段与正常储层段多方面的对比,得出研究区岩性细、泥质含量高、孔隙结构复杂,高束缚水饱和度是影响该区储层低阻的重要因素。在此基础上,探讨了低阻的宏观地质成因,认为该区馆陶组低阻油层的形成在地质上受研究区内沉积背景及成藏动力的控制。  相似文献   

17.
珠江口盆地A油藏M_1油组为高孔低渗低阻油藏,为了查明造成油层低电阻率的主要原因,从储集层岩石粒度、泥质含量及粘土矿物类型和分布形式、孔隙结构特征、导电矿物含量、砂泥岩薄互层发育状况等方面进行分析,并与高阻层段M_2油组进行对比.形成M_1油组低电阻率的主要原因是:储集层细颗粒含量高,泥质含量高,细微孔喉体积百分数高,造成储集层束缚水饱和度高,增强了油层的导电性能;粘土矿物以伊蒙混层和高岭石为主,呈薄膜状、絮状、分散状分布,增强了储集层的附加导电能力;砂泥岩薄互层的发育使本身低阻的油层受围岩低电阻率的影响而变得更低.导电矿物和地层水矿化度虽对储集层电阻率降低有一定影响,但不是主要因素.  相似文献   

18.
测井解释小层含水饱和度算法研究   总被引:2,自引:0,他引:2  
针对储量计算中测井解释小层含水饱和度的计算问题,用Excel宏命令和函数实现了含水饱和度孔隙体积平均计算方法、含水饱和度极值算术平均计算方法、含水饱和度厚度极值平均计算方法以及含水饱和度孔隙体积极值平均计算方法的功能。讨论了各种计算方法的依据及优势,认为含水饱和度孔隙体积极值平均计算方法是4种算法中较为完善的计算方法,具有一定的应用价值。  相似文献   

19.
珠江口盆地A 油藏M1油组为高孔低渗低阻油藏,为了查明造成油层低电阻率的主要原因,从储集层岩石粒度、泥质含量及粘土矿物类型和分布形式、孔隙结构特征、导电矿物含量、砂泥岩薄互层发育状况等方面进行分析,并与高阻层段M2 油组进行对比。形成M1 油组低电阻率的主要原因是:储集层细颗粒含量高,泥质含量高,细微孔喉体积百分数高,造成储集层束缚水饱和度高,增强了油层的导电性能;粘土矿物以伊蒙混层和高岭石为主,呈薄膜状、絮状、分散状分布,增强了储集层的附加导电能力;砂泥岩薄互层的发育使本身低阻的油层受围岩低电阻率的影响而变得更低。导电矿物和地层水矿化度虽对储集层电阻率降低有一定影响,但不是主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号