首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tail kinks (tk) is a classical mouse skeletal mutation, located on Chromosome (Chr) 9. As the first step for the positional cloning of the tk gene, we have established a genetic map of a region surrounding the tk locus by generating a backcross segregating for tk. From this backcross, 1004 progeny were analyzed for the coat-color phenotype of the proximally located dilute (d) gene and for the distally flanking microsatellite marker, D9Mit12. Fifty-six recombinants between d and tk and 75 recombinants between tk and D9Mit12 were identified, completing a panel of 130 recombinants including one double recombinant. This panel allowed us to map five microsatellite loci as well as d and Mod-1 with respect to tk. We show that one of the microsatellite markers mapped, D9Mit9, does not recombine at all with tk in our backcross. This indicates that the D9Mit9 locus will serve as a good starting point for a chromosomal walk to the tk gene.  相似文献   

2.
The Werner syndrome locus (WRN) is located at 8p11-p12. To facilitate eventual cloning of the WRN gene, a 10,000-rad radiation-reduced hybrid (RH) cell panel was generated to map genetic markers, sequence-tagged sites (STSs), and genes in this region. A hamster cell line carrying an intact human chromosome 8 was fused with another hamster cell line. Two sets of hybrid cell panels from 2 separate fusions were generated; each panel consisted of 50 independent clones; 33 and 34 cell lines from the 2 fusions retained human chromsome material as determined by inter-Alu PCR. The combined panel was genotyped for 52 markers spanning the entire chromosome, including 10 genes, 29 anonymous polymorphic loci, and 13 STSs. Seventeen of these markers have not been previously described. Markers near the centromere were retained at a higher frequency than more distal markers. Fluorescence in situ hybridization was also used to localize and order a subset of the markers. A RH map of the WRN region was constructed using a maximum likelihood method, giving the following most likely order: D8S131-D8S339 (GSR)-D8S124-D8S278-D8S259-(D8S71)-D8S283- D8S87-D8S105-D8S135 (FGFR1)-D8S135PB-D8S255-ANK1. A genetic map of 15 short tandem repeat polymorphic loci in the WRN region was also constructed. The marker orders from the genetic and RH maps were consistent. In addition, an integrated map of 24 loci in the WRN region was generated using information from both genetic and RH mapping methods. A 1000:1 framework map for 6 loci (LPL-D8S136-D8S137-D8S87-FGFR1-ANK1) was determined by genetic mapping, and the resulting locus order was fixed during analysis of the RH genotype data. The resulting integrated map contained more markers than could confidently be ordered by either genetic or RH mapping alone.  相似文献   

3.
The Lps locus on mouse chromosome 4 controls host responsiveness to lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria. The C3H/HeJ inbred mouse strain is characterized by a mutant Lps allel (Lpsd) that renders it hyporesponsive to LPS and naturally tolerant of its lethal effects. To identify the Lps gene by a positional cloning strategy, we have generated a high-resolution linkage map of the chromosomal region surrounding this locus. We have analyzed a total of 1604 backcross mice from a preexisting interspecific backcross panel of 259 (Mus spretus x C57BL/6J)F1 x C57BL/6J and two novel panels of 597 (DBA/2J x C3H/HeJ)F1 x C3H/HeJ and 748 (C57BL/6J x C3H/HeJ)F1 x C3H/HeJ segregating at Lps. A total of 50 DNA markers have been mapped in a 11.8-cM span overlapping the Lps locus. This positions the Lps locus within a 1.1-cM interval, flanked proximally by a large cluster of markers, including three know genes (Cd301, Hxb, and Ambp), and distally by two microsatellite markers (D4Mit7/D4Mit178). The localization of the Lps locus is several centimorgans proximal to that previously assigned.  相似文献   

4.
The homozygous mouse mutant aphakia (ak) has been characterized by bilaterally aphakic eyes without a pupil [Varnum DS, Stevens, LC (1968): J Hered 59:147-150]. The mutation was mapped to chromosome 19 [Varnum DS, Stevens, LC (1975): Mouse News Lett 53:35]. Our linkage studies yielded a precise localization of the ak gene 0.6 +/- 0.3 cM proximal to the microsatellite marker D19Mit10 and 0.7 +/- 0.4 cM distal to D19Mit4 and D19Mit91. No recombination was found with the marker D19Mit9 among 418 backcross offspring tested. The developmental control gene Pax2 mapped 11.0 +/- 3.5 cM proximal to ak and is excluded as a candidate gene. Sequence analysis of Fgf8 and Chuk1, which are localized close to the marker D19Mit10, detected no mutations in the ak/ak mutants. Histological analysis of homozygous mutants suggested the arrest of lens development at the lens stalk stage, a transient morphological structure during the formation of the lens vesicle. In the lens remnants, Pax6 and Six3 are expressed, whereas in the persisting lens stalk only Pax6 was detected. The expression pattern of Pax2 appeared normal; Cryaa expression could not be detected. As a consequence of the arrested lens development, other ocular tissues that require for their development information from the intact lens, such as iris, ciliary muscle, retina, and vitreous body, are absent or formed abnormally.  相似文献   

5.
BXSB mice spontaneously develop a lupus-like syndrome that is accelerated by the Yaa gene (Y-linked autoimmune accelerator). We studied the phenotype of disease in (B10 x BXSB)F1 and (BXSB x (B10 x BXSB)F1) backcross mice and genotyped 224 backcross animals to allow a microsatellite-based genome-wide linkage analysis to be conducted. In the backcross population, three intervals on chromosome 1 showed significant linkage to disease, suggesting that multiple loci contribute to the production of autoimmune disease. D1Mit5 at 32.8 cM was linked to development of nephritis (chi(2) = 15.68, p = 7.5 x 10(-5)), as was D1Mit12 at 63.1 cM (chi(2) = 20.17, p = 7.1 x 10(-6)). D1Mit403 at 100 cM was linked to anti-dsDNA Ab production (chi(2) = 17.28, p = 3.2 x 10(-5)). Suggestive linkages to antinuclear Abs and nephritis were identified on chromosome 3, to splenomegaly on chromosome 4, and to anti-ssDNA Ab production on chromosome 10. Chromosome 4 and the telomeric region of chromosome 1 have previously been linked to disease in other mouse models of systemic lupus erythematosus; however, the centromeric regions of chromosome 1 and chromosomes 3 and 10 are unique to BXSB. This implies that, though some loci may be common to a number of mouse models of lupus, different clusters of disease genes confer disease susceptibility in different strains of mice.  相似文献   

6.
1. The effect of two D3/2 dopamine receptor agonists, LY-171555 (quinpirole) and 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) on spontaneous [3H]-acetylcholine ([3H]-ACh) release were investigated in rat striatal synaptosomes. 2. Quinpirole and 7-OH-DPAT inhibited in a concentration-dependent manner the basal efflux of [3H]-ACh with similar Emax (maximal inhibitory effect) values (29.95 +/- 2.91% and 33.19 +/- 1.21%, respectively). Significant differences were obtained between the pEC50 (-log of molar concentration) of quinpirole (7.87 +/- 0.12) and 7-OH-DPAT (7.21 +/- 0.17; P < 0.01). 3. Different concentrations (0.3-10 nM) of haloperidol (D2/3 dopamine receptor antagonist) shifted to the right the concentration-response curves elicited by quinpirole and 7-OH-DPAT, without modifications in the Emax. 4. Slopes of a Schild plot obtained with haloperidol in the presence of quinpirole and 7-OH-DPAT were not significantly different from unity (0.85 +/- 0.05 and 1.17 +/- 0.11, respectively) and consequently haloperidol interacted with a homogeneous receptor population. The pKB values of haloperidol obtained from Schild regression were 9.96 +/- 0.15 (in presence of quinpirole) and 9.90 +/- 0.09 (in presence of 7-OH-DPAT). 5. Specific binding of [3H]-YM-09151-2 to membranes of striatal synaptosomes and cells expressing D2 and D3 dopamine receptors was inhibited by haloperidol. Analysis of competition curves revealed the existence of a single population of receptors. There were no differences between the estimated pKi (-log of molar concentration) values for synaptosomes (8.96 +/- 0.02) and cells expressing D2 receptors (8.81 +/- 0.05), but the pKi value from cells expressing D3 dopamine receptors differed significantly (8.48 +/- 0.06; P < 0.01). 6. In conclusion, the data obtained in the present study indicate that quinpirole and 7-OH-DPAT, two D3/2 dopamine receptor agonists, inhibit the spontaneous [3H]-ACh efflux and this effect is competitively antagonized by haloperidol and probably mediated through dopamine D2 receptors.  相似文献   

7.
Dietary phosphorus restriction up-regulates intestinal vitamin D receptor (VDR), but the tissue specificity of the up-regulation and the mechanism of receptor accumulation remain unknown. Therefore, the effects of low phosphorus diet (LPD) on VDR content in intestine, kidney, and splenic monocytes/macrophages were examined. Male Sprague-Dawley rats weighing 50-100 g were fed a normal diet (NPD; 0.6% Ca, 0.65% P) as controls followed by an LPD (0.6% Ca, 0.1% P) for 1-10 days (D1-D10). LPD rapidly decreased serum P levels by D1 from 11.11 +/- 0.19 mg/dl (mean +/- SE) to 4.98 +/- 0.37 mg/dl (n = 9). LPD increased total serum Ca from 10.54 +/- 0.09 mg/dl to 11.63 +/- 0.15, 12.17 +/- 0.15, and 12.39 +/- 0.18 mg/dl by D1, D2, and D3, respectively, and then remained stable. Serum 1,25-(OH)2D3 rapidly increased from 123 +/- 5.4 pg/ml to 304 +/- 35 pg/ml by D1, reached a plateau through D5, and then gradually increased to 464.9 +/- 27.7 pg/ml by D10. Intestinal VDR quantitated by ligand binding assay increased 3.5-fold from 169.6 +/- 13.7 fmol/mg of cytosol protein in rats fed NPD (n = 12) to a peak of 588.3 +/- 141.88 fmol/mg of protein by D3 (n = 6; p < 0.001) and then decreased to a plateau level of 2.5-fold greater than NPD (p < 0.05) during D5 to D10. In contrast, LPD did not up-regulate kidney or splenic monocyte/macrophage VDR. Northern blot analysis showed that intestinal VDR mRNA increased 2-fold by D2 (n = 3) of LPD and then gradually decreased to control levels after D5. In contrast, kidney VDR mRNA levels did not change during the first 5 days of P restriction and then subsequently decreased to 50% of NPD controls. The results of these studies indicate that VDR up-regulation during dietary phosphorus restriction is tissue-specific and that the mechanism of the up-regulation is time-dependent. Acutely (D1-D5), phosphorus restriction up-regulates intestinal VDR through increased VDR gene expression, whereas chronic (D5-D10) phosphorus restriction appears to alter VDR metabolism through nongenomic mechanisms that are consistent with prolongation of the half-life of the receptor. The nature of the tissue-specific regulation of VDR during phosphorus restriction remains to be determined.  相似文献   

8.
Genetic analysis of diabetogenic genes involved in developing spontaneous diabetes of NIDDM type in the OLETF rat was performed in (OLETF female X B N male)F2 and (OLETF female X BN male)F1 female X OLETF male backcross male offspring. In the F2 and/or backcross offspring, a high frequency of diabetes was found to be associated with a coat color gene, H (hooded). Since it is know that H gene is located on chromosome 14. an attempt was made to examine the linkage association of the gene responsible for elevating plasma glucose with various microsatellite markers of chromosome 14 in male F2 and/or backcross offspring. The results show that a high linkage exists with a microsatellite marker, D14Mit4 (LOD > 2). The gene was designated Odb2. It was also found that both genes, Odb1 which was previously found on chromosome X, and homozygous Odh2 are required to cause elevated plasma glucose in OGTT.  相似文献   

9.
In cultured chromaffin cells and plasma membrane vesicles from chromaffin tissue, the transport of D-[3H]adenosine followed Michaelis-Menten saturation kinetics, with Km values of 1.5 +/- 0.3 microM and 1.9 +/- 0.2 microM, respectively. The transport of the isomer, L-[3H]adenosine, showed sigmoidal kinetics in both preparations. In plasma membrane vesicles the S0.5 was 2.5 +/- 0.2 microM with a Hill coefficient of 2.8 and the Vmax value of 0.26 +/- 0.01 pmol s-1 (mg of protein)-1. In cultured chromaffin cells the kinetic parameters for L-[3H]adenosine were S0.5 = 6.2 +/- 0.2 microM and a Vmax 19.7 +/- 0.5 pmol/min per 10(6) cells, with a pronounced positive cooperativity. The Hill coefficient was 4.9. The transport of the L-isomer in cultured cells followed Michaelis-Menten kinetics at the lowest concentrations employed, below 2 microM. On the basis of these results, we propose a kinetic model whereby the adenosine transporter functions mnemonically.  相似文献   

10.
It is controversial whether metabolic disorders of human obesity include protein metabolism. Even less information is available concerning the effect of fat distribution on protein metabolism. Therefore, a comprehensive evaluation of glucose, lipid, and protein metabolism was performed in 11 obese nondiabetic and 9 normal women whose body composition and regional fat distribution were determined. [1-14C]Leucine and [3-3H]glucose were infused in the postabsorptive state and during an euglycemic hyperinsulinemic (35-40 microU/mL) clamp combined with indirect calorimetry for assessment of leucine flux, oxidation, and nonoxidative disposal, glucose turnover and oxidation, and lipid oxidation. Fat-free mass (FFM) was estimated by a bolus of 3H2O. Subcutaneous abdominal and visceral adipose tissues were determined by nuclear magnetic resonance imaging. During the clamp, obese women had lower glucose turnover (4.51 +/- 0.41 vs. 6.63 +/- 0.40 mg/min.kg FFM; P < 0.05), with a defect in both oxidation (3.27 +/- 0.22 vs. 3.89 +/- 0.21) and nonoxidative disposal (1.24 +/- 0.27 vs. 2.74 +/- 0.41; P < 0.005), whereas lipid oxidation was higher during the clamp (0.49 +/- 0.15 vs. 0.17 +/- 0.09 mg/min.kg FFM). There was no difference in leucine flux (basal, 2.23 +/- 0.17 vs. 2.30 +/- 0.29; clamp, 2.06 +/- 0.19 vs. 2.10 +/- 0.24 mumol/min.kg FFM), oxidation (basal, 0.37 +/- 0.04 vs. 0.36 +/- 0.05; clamp, 0.34 +/- 0.04 vs. 0.39 +/- 0.06) and nonoxidative leucine disposal (basal, 1.86 +/- 0.17 vs. 1.94 +/- 0.26; clamp, 1.72 +/- 0.20 vs. 1.71 +/- 0.19) in the two groups. In obese women, basal leucine oxidation was directly related with glucose oxidation and inversely to lipid oxidation (both P < 0.05), whereas visceral adipose tissue was inversely related to leucine flux both in the basal state and during the clamp (P < 0.05). In conclusion, in human obesity, 1) rates of protein metabolism in the basal state and in the range of insulin concentrations encountered after a meal are normal; 2) protein oxidation is positively related to glucose oxidation and negatively related to lipid oxidation; and 3) visceral adipose tissue is inversely related to all parameters of protein metabolism.  相似文献   

11.
12.
To investigate the role of aquaporin-1 (AQP1) water channels in proximal tubule function, in vitro proximal tubule microperfusion and in vivo micropuncture measurements were done on AQP1 knockout mice. The knockout mice were generated by targeted gene disruption and found previously to be unable to concentrate their urine in response to water deprivation. Unanesthetized knockout mice consumed 2.8-fold more fluid than wild-type mice and had lower urine osmolality (505 +/- 40 vs. 1081 +/- 68 milliosmolar). Transepithelial osmotic water permeability (Pf) in isolated microperfused S2 segments of proximal tubule from AQP1 knockout [-/-] mice was 0.033 +/- 0.005 cm/s (SE, n = 6 mice, 37 degreesC), much lower than that of 0.15 +/- 0.03 cm/s (n = 8) in tubules from wild-type [+/+] mice (P < 0.01). In the presence of isosmolar luminal perfusate and bath solutions, spontaneous fluid absorption rates (nl/min/mm tubule length) were 0.31 +/- 0.12 (-/-, n = 5) and 0.64 +/- 0.15 (+/+, n = 8). As determined by free-flow micropuncture, the ratios of tubular fluid-to-plasma concentrations of an impermeant marker TF/P in end proximal tubule fluid were 1.36 +/- 0. 05 (-/-, n = 8 mice [53 tubules]) and 1.95 +/- 0.09 (+/+, n = 7 mice [40 tubules]) (P < 0.001), corresponding to 26 +/- 3% [-/-] and 48 +/- 2% [+/+] absorption of the filtered fluid load. In collections of distal tubule fluid, TF/P were 2.8 +/- 0.3 [-/-] and 4.4 +/- 0.5 [+/+], corresponding to 62 +/- 4% [-/-] and 76 +/- 3% [+/+] absorption (P < 0.02). These data indicate that AQP1 deletion in mice results in decreased transepithelial proximal tubule water permeability and defective fluid absorption. Thus, the high water permeability in proximal tubule of wild-type mice is primarily transcellular, mediated by AQP1 water channels, and required for efficient near-isosmolar fluid absorption.  相似文献   

13.
A bidirectional replicated selection experiment for high (H1 and H2) or low (L1 and L2) cumulative number of complete matings (CNCM) in male Japanese quail was conducted for 40 generations. In the S32 generation, a subline was taken from each selected line and selection was relaxed. In the randombred control line (C), CNCM and unselected traits changed significantly over generations. Means of the selected lines were adjusted each generation for deviations from the control means. After 40 generations of selection, there was a 21-fold difference in CNCM (59.4 vs 2.8) between Lines H1 and L1. Whereas means increased and variation decreased in the high lines, means decreased and variation increased in the low lines. Regressions of mean CNCM on generation of Lines H1, H2, L1, and L2 were 1.15 +/- 0.08, 0.61 +/- 0.08, -0.26 +/- 0.04, and -0.34 +/- 0.03, respectively. Although responses to selection were observed throughout the 40 generations in Line H1, the low lines appeared to have reached a limit to selection after the S30 generation. Relaxed lines provided supporting evidence for this conclusion. Mean CNCM decreased in the relaxed high lines to that of the control, whereas the low relaxed lines remained at the same level as their corresponding selected lines. Line H2 went into extinction in the 37th generation as a result of reduced fitness. Realized heritabilities of CNCM were 0.09, 0.07, 0.06, and -0.15 in Lines H1, H2, L1, and L2, respectively. As correlated responses to the selection, male quail in the high lines were heavier, exhibited greater relative aggressiveness, and had larger cloacal glands than those of the control and low lines.  相似文献   

14.
We have cloned and sequenced the murine homologue of the human EXT1 gene. At the protein level, these genes show almost complete identity as divergence is limited to only 5 amino acid positions that are scattered about the whole sequence. In addition, similarity searches identified a protein from chromosome III of C. elegans that shows significant similarity to the human and murine EXT/Ext genes. Using high resolution backcross mapping, the murine Ext1 was mapped at 26.55 cM between D15Mit143 and D15Mit153 on mouse chromosome 15. Therefore, Ext1 is part of an evolutionarily conserved linkage group including SDC2/Hspg1, TRHR/Trhr, EXT1/Ext1, MYC/Myc, and TG/Tgn.  相似文献   

15.
1. The interactive effects of different metabotropic glutamate (mGlu) receptor subtypes to regulate phosphoinositide turnover have been studied in neonatal rat cerebral cortex and hippocampus by use of agonists and antagonists selective between group I and II mGlu receptors. 2, The group II-selective agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC; 100 microM) had no effect on basal total inositol phosphate ([3H]-InsPx) accumulation (in the presence of Li+) in myo-[3H]-inositol pre-labelled slices, but enhanced the maximal [3H]-InsPx response to the group I-selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG) by about 100% in both hippocampus and cerebral cortex. In cerebral cortex the enhancing effect of 2R,4R-APDC occurred with respect to the maximal responsiveness and had no effect on EC50 values for DHPG (-log EC50 (M): control, 5.56+/-0.05; +2R,4R-APDC, 5.51+/-0.08). 2R,4R-APDC also caused a significant enhancement of the DHPG-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) mass response over an initial 0-300 s time-course. 3. The enhancing effects of 2R,4R-APDC on DHPG-stimulated [3H]-InsPx accumulation were observed in both the presence and nominal absence of extracellular Ca2+, and irrespective of whether 2R,4R-APDC was added before, simultaneous with, or subsequent to DHPG. Furthermore, increasing the tissue cyclic AMP concentration up to 100 fold had no effect on DHPG-stimulated Ins(l,4,5)P3 accumulation in the absence or presence of 2R,4R-APDC. 4. 2R,4R-APDC and (2S, 1'R, 2'R, 3'R)-2-(2,3-dicarboxylcyclopropyl)glycine (DCG-IV), the latter agent in the presence of MK-801 to prevent activation of NMDA-receptors, each inhibited forskolin-stimulated cyclic AMP accumulation by about 50%, with respective EC50 values of 1.3 and 0.04 microM (-log EC 50 (M): 2R,4R-APDC, 5.87+/-0.09; DCG-IV, 7.38+/-0.05). In the presence of DHPG (30 microM), 2R,4R-APDC and DCG-IV also concentration-dependently increased [3H]-InsPx accumulation with respective EC50 values of 4.7 and 0.28 microM (-log EC50 (M): 2R,4R-APDC, 5.33+/-0.04; DCG-IV, 6.55+/-0.09) which were 3-7 fold rightward-shifted relative to the adenylyl cyclase inhibitory responses. 5. The group II-selective mGlu receptor antagonist LY307452 (30 microM) caused parallel rightward shifts in the concentration-effect curves for inhibition of forskolin-stimulated adenylyl cyclase, and enhancement of DHPG-stimulated [3H]-InsPx accumulation, by 2R,4R-APDC yielding similar equilibrium dissociation constants (KdS, 3.7+/-1.1 and 4.1+/-0.4 microM respectively) for each response. 6. The ability of 2R,4R-APDC to enhance receptor-mediated [3H]-InsPx accumulation appeared to be agonist-specific; thus although DHPG (100 microM) and the muscarinic cholinoceptor agonist carbachol (10 microM) stimulated similar [3H]-InsPx accumulations, only the response to the former agonist was enhanced by co-activation of group II mGlu receptors. 7. These data demonstrate that second messenger-generating phosphoinositide responses stimulated by group I mGlu receptors are positively modulated by co-activation of group II mGlu receptors in cerebral cortex and hippocampus. The data presented here are discussed with respect to the possible mechanisms which might mediate the modulatory activity, and the physiological and pathophysiological significance of such crosstalk between mGlu receptors.  相似文献   

16.
We present here the fine genetic mapping of the proximal part of mouse Chromosome (Chr) 12 between D12Mit54 and D12Mit4. This chromosomal region contains three loci, Pax9, Tcf3a, and Acrodysplasia (Adp), which seem to play an important role in pattern formation during mouse embryogenesis. The Adp mutation, which was created by transgene integration, causes skull, paw, and tail deformities. Pax9, which is expressed in the face, paws, and tail, once qualified as a possible candidate for the Adp locus. We analyzed 997 interspecific backcross progeny for recombination between the markers D12Mit54 and D12Mit4; we recovered 117 recombinants, which were further typed for Pax9, Tcf3a, Adp, D12Mit88, D12Nds1, D12Mit36, and D12Mit34. This study represents the first instance in which all the above loci have been included in a single analysis, thereby allowing unambiguous determination of the genetic order and distance between D12Mit54 and D12Mit4. From our results, we conclude that the Adp locus is distinct from either Pax9 or Tcf3a.  相似文献   

17.
Protease-activate receptors (PARs) mediate activation of platelets and other cells by thrombin and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis, and other normal and pathological processes. We report here the structure of the mouse and human PAR3 genes as well as the organization of a PAR gene cluster encompassing the genes encoding PARs 1, 2, and 3. We also report the structure of the mouse and human PAR4 genes, which map to distinct chromosomal locations and encode a new thrombin receptor. PARs 1-4 are all encoded by genes with the same two exon structure. In each case, exon 1 encodes a signal peptide, and exon 2 encodes the mature receptor protein. These are separated by an intron of variable size. The genes encoding PARs 1-3 all map to chromosome 13D2 in mouse and chromosome 5q13 in human. In mouse, all three genes are located within 80 kilobases of each other. The PAR1 gene is located centrally and is flanked upstream by the PAR3 gene and downstream by the PAR2 gene in both species. The proximity of the PAR1 and PAR3 genes suggests the possibility that these genes might share regulatory elements. A comparison of the structures of the PAR amino acid sequences, gene structures, locus organization, and chromosomal locations suggests a working model for PAR gene evolution.  相似文献   

18.
A solid state NMR method is presented for determination of a backbone dihedral angle phi in peptides, being based on the previously reported method, relayed anisotropy correlation (RACO) NMR [Y. Ishii et al., Chem. Phys. Lett. 256 (1996) 133]. In the present method, the 15N-1H and the 13C-1H dipolar tensors in the 1H-15N-13C-1H system are two-dimensionally (2D) correlated via polarization transfer from 15N to 13C under magic angle spinning (MAS). This method was applied to N-acetyl[1,2-13C,15N]D,L-valine, and the H-C-N-H dihedral angle was determined to be 154.0 +/- 1.4 degrees or 206.0 +/- 1.4 degrees, the former agreeing with the X-ray value of 154 +/- 5 degrees.  相似文献   

19.
SK&F 96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenylethyl]-1H-imi dazole hydrochloride) stimulated the accumulation of [3H]inositol monophosphates ([3H]IP1) in human U373 MG astrocytoma cells prelabelled with [3H]inositol (EC50 15 +/- 1 microM, Hill coefficient 3.8 +/- 0.4). SK&F 96365-induced accumulation of [3H]IP1 increased linearly with time, but there was no initial rapid formation of [3H]IP3. SK&F 96365 also stimulated [3H]IP1 accumulation in human HeLa cells, but only to a small extent in slices of rat cerebral cortex and guinea-pig cerebellum. SK&F 96365-induced accumulation of [3H]IP1 in U373 MG cells increased as extracellular Ca2+ was increased from nominally zero to 4 mM, but there was no evidence that SK&F 96365 induced any marked entry of Ca2+ into cells; only an inhibition of store-refilling-induced Ca2+ entry was apparent. Further, the response to SK&F 96365 was additive with that to the Ca2+ ionophore ionomycin. Depolarization of the cells with raised K+ produced only a small stimulation of phosphoinositide hydrolysis. SK&F 96365 caused the release of Ca2+ from intracellular stores in U373 MG cells (EC50 26 +/- 14 microM), but thapsigargin induced only a small accumulation of [3H]IP1. Miconazole, another N-substituted imidazole, also stimulated [3H]IP1 accumulation in U373 cells.  相似文献   

20.
The dopamine D4 receptor has lately attracted interest since it has been hypothesized to be involved in the pathogenesis and pharmacotherapy of neuropsychiatric diseases. The present study provides first in vivo evidence of dopamine D4 receptors in primate brain using a [11C]benzo[g]quinoline, the novel radioligand [11C]SDZ GLC 756 ([11C]GLC: in vitro dissociation constants at human receptor clones [nM]: 1.10 at D1; 0.40 at D2; 25 at D3; 0.18 at D4.2; 6.03 at D5). Dynamic positron emission tomography scans were performed on healthy baboons (Papio hamadryas, n = 3). Specific receptor binding (SB) was calculated for striatum and neocortex (frontal, temporal, parietal, and occipital) based on the differences between the regional and the cerebellar concentration of [11C]. Blockade of D1 and D5 receptors by SCH23390 (1.7 pmol/kg) diminished SB in the striatum by 55 +/- 4% (mean +/- standard deviation, P < 0.05) and in the frontal cortex by 13 +/- 8% (P < 0.05) when compared to SB in the unblocked state (SB(D1-D5)). In the presence of the dopamine antagonists SCH23390 (1.7 micromol/kg) and raclopride (5.7 pmol/kg)--which mask the D1, D2, D3, and D5 subtypes--SB of [11C]GLC to D4 receptors (SB(D4)) was demonstrated in the striatum and all cortical regions of interest. In the striatum, the ratio of SB(D4)/SB(D1-D5) was 0.13 +/- 0.07. In the neocortex, SB(D4)/SB(D1-D5) was notably higher (0.77 +/- 0.29; mean of all cortical regions of interest). The widespread distribution of dopamine D4 receptors suggests a basic functional role of this receptor subtype in the modulation of cortical and subcortical neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号