首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can af-fect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.  相似文献   

2.
A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop ap-pears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium ad-sorption capacity of water is up to 0.95 kg·kg^-1 at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82℃, which is 7 ℃ lower than that of silica gel, and the desorption temperature is no more than 100 ℃. At the evaporation temperature of 10 ℃, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg^-1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.  相似文献   

3.
热管型船用吸附制冰机的设计   总被引:1,自引:1,他引:0  
A heat pipe type adsorption ice maker with two adsorbers for fishing boats is designed by using ammonia as refrigerant and compound of activated carbon-CaCl2 as adsorbent. This type of heat pipe adsorber can solve the problem of incompatibility between ammonia, copper, seawater and steel. The working process of the ice maker with 8.7kg adsorbent per bed is simulated. The results show that the optimal semi-cycle time is about 9 min at the evaporating temperature of -15℃, where the corresponding cooling power, specific cooling power per kilogram adsorbent SCP and coefficient of refrigerant performance COP are respectively 3.6kW, 217W·kg-1 and 0.404.  相似文献   

4.
Low critical temperature limits the application of CO2 trans-critical power cycle. The binary mixture of R290/CO2 has higher critical temperature. Using mixture fluid may solve the problem that subcritical CO2 is hardly con-densed by conventional cooling water. In this article, theoretical analysis is executed to study the performance of the zeotropic mixture for trans-critical power cycle using low-grade liquid heat source with temperature of 200 °C. The results indicated that the problem that CO2 can't be condensed in power cycle by conventional cooling water can be solved by mixing R290 to CO2. Variation trend of outlet temperature of thermal oil in super-critical heater with heating pressure is determined by the composition of the mixture fluid. Gliding temperature causes the maximum outlet temperature of cooling water with the increase of mass fraction of R290. There are the maximum values for cycle thermal efficiency and net power output with the increase of supercritical heating pressure.  相似文献   

5.
In a hard chromium electroplating process, a heat exchanger is employed to remove the heat produced from the high current intensity in an electroplating bath.Normally, a conventional U shape heat exchanger is installed in the bath, but it provides low heat removal.Thus, this study designs a novel W serpentine shape heat exchanger with identical heat transfer area to the conventional one for increasing heat removal performance.The performance of the heat exchange is tested with various flow velocities in a cross-section in range of 1.6 to 2.4 m·s~(-1).Mathematical models of this process have been formulated in order to simulate and evaluate the heat exchanger performance.The results show that the developed models give a good prediction of the plating solution and cooling water temperature, and the novel heat exchanger provides better results at any flow velocity.In addition, the W serpentine shape heat exchanger has been implemented in a real hard chromium electroplating plant.Actual data collected have shown that the new design gives higher heat removal performance compared with the U shape heat exchanger with identical heat transfer area; it removes more heat out of the process than the conventional one of about 23%.  相似文献   

6.
Distillation column control is widely explored in literature due to its complexity and importance in chemical and petrochemical industries.In this process,pressure represents one of the most important variables to be controlled.However,there are few studies about how pressure affects the dynamic behavior of distillation columns and most research on distillation column control involve direct manipulation of cooling fluid through the condenser.Nevertheless,such an approach demands constant changes in cooling fluid flowrates that are commonly by the order of tons per hour,which can be difficult to work or even unfeasible in a real plant.Furthermore,this strategy is usually avoided,as it can cause fouling and corrosion acceleration.The hot-vapor bypass strategy fits well as a solution for these issues,eliminating the need to dynamically manipulate cooling fluid flowrates in the condensation unit.This work presents the modeling and simulation of a conventional distillation column for the separation of water and ethanol,in which a comparative study between a conventional pressure control and a control using hot-vapor bypass was performed.The main results were obtained through dynamic simulations which considered various disturbances in the feed stream,and demonstrated superior performance by the hot-vapor bypass system over the usual scheme proposed in literature,while evaluating the Integral Absolute Error (IAE) norm as the control performance index.  相似文献   

7.
Auto cascade refrigeration (ACR) cycle with phase separators is widely used in the cryogenic system. The compo-sition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentra-tion decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.  相似文献   

8.
The partial oxidation of methane under periodic operation over Ni/γ-Al2O3 catalyst was investigated in a Pd-membrane reactor.The effects of key parameters such as the inlet composition and the sweeping gas on methane conversion and the hydrogen recovery are numerically established with two periodic input functions.In order to analyze the effect of the inputs modulation,the reaction was performed under low steam to methane ratio at a moderate temperature and pressure.It was obtained that to achieve process intensification is to operate the process in a periodic way.The main results show that the periodic input functions can improve the performance of the process compared to the optimal steady state operation.Moreover,there is an optimum amplitude of manipulated inputs leads to a maximum of hydrogen recovery.It is noteworthy that the comparison between the predicted performance via the sinusoidal and the square ways show that the better average performance was obtained with the square way.  相似文献   

9.
AB-8 resin was used as an adsorbent for the removal of trans-1,2-cyclohexandiol(CHD) from aqueous solutions.Batch experiments were carried out to investigate the effect of contact time and temperature on sorption efficiency.The adsorptive thermodynamic properties and kinetics of CHD from water onto AB-8 resin were studied.The Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior.Thermodynamic parameters such as G,H and S were calculated.The results indicate that the equilibrium data are perfectly represented by Langmuir isotherm model.Thermodynamic study reveals that it is an exothermic process in nature and mainly physical adsorption enhanced by chemisorption with a decrease of entropy process.The kinetics of CHD adsorption is well described by the pseudo second-order model.The adsorbed CHD can be eluted from AB-8 resin by 5% ethanol aqueous solution with 100% elution percentage.  相似文献   

10.
The study is focused on modeling of separation process and optimization.An adsorption separation process is simulated.The surfactin production process by Bacillus subtilis ATCC 21332 followed by surfactin adsorption in a fixed-bed column packed with commercial active carbon is studied in laboratory.The adsorption column achieves high surfactin recovery(94%)by up-flow methanol elution at 25°C.The adsorption column is simulated with a complex one-dimensional plug flow dispersion model coupled with nonlinear adsorption equilibrium,based on the assumption that the adsorption of surfactin is monomolecular layer and no micelle is formed.The molecular diffusion coefficient of surfactin in water solution with electric neutrality is estimated to be 0.428×10 -5 cm 2 ·s -1 by molecular dynamics simulation.The model developed can describe the complex interplay of adsorption kinetics,fluid dynamics,and mass-transfer phenomena based on the assumption of no radial temperature and concentration gradients,and is of adequate precision.The work involved in this paper is valuable for the optimization of the production process of surfactin.  相似文献   

11.
潘权稳  王如竹 《化工学报》2016,67(Z2):262-268
吸附式制冷常采用回热回质循环来提升系统性能。研究了一种采用串联回热和类回质方式的回热回质循环吸附式制冷系统,并对其进行仿真。系统的主要部件(含作为储液器的蒸发器)采用3层换热法建立数学模型。仿真结果表明,随着制冷时间的延长,系统性能系数(COP)单调增大,单位质量制冷量(SCP)单调减小。随着回热时间的延长,COP和SCP是先增大后减小,最佳的回热时间为10 s。随着回质时间的延长,COP和SCP波动性下降,回质过程未提高系统性能。COP和SCP随着热水、冷冻水温度的升高以及冷却水温度的下降而增大。热水温度对SCP以及冷冻水、冷却水温度对COP和SCP的影响,呈现线性变化,而热水温度对COP的影响呈现二次变化。  相似文献   

12.
对固体吸附制冷系统中的气液回热进行了研究,对回热量在吸附制冷系统中的影响进行了理论分析,并通过试验验证了气液回热对系统产生的积极影响.  相似文献   

13.
以连续回热型吸附式空调 /热泵为研究对象 ,通过对系统循环特性的分析 ,给出了吸附床、热源、冷凝器、蒸发器等主要部件的动态方程 .并充分考虑了吸附床回热过程中方程的变化 ,同时考虑了吸附床解吸吸附过程的非平衡吸附特性 ,引入了非平衡吸附方程 .给出了系统各主要性能参数的计算方法 ,为系统循环特性与动态性能的进一步分析奠定了基础  相似文献   

14.
实验研究了操作参数(冷凝器进水温度、高温蒸发器进水温度和低温蒸发器进水温度)对双蒸发压缩/喷射制冷系统及两相喷射器性能的影响。结果显示,喷射器引射系数随冷凝器进水温度和高温蒸发器进水温度的升高而减小,随低温蒸发器进水温度的升高而增大;喷射器压升比随冷凝器进水温度和高温蒸发器进水温度的升高而增大,随低温蒸发器进水温度的升高而减小。冷凝器进水温度和高温蒸发器进水温度对制冷系统性能的影响较大,而低温蒸发器进水温度对制冷系统性能的影响较小。其中,冷凝器进水温度每降低5℃,制冷系统COP增加0.44;高温蒸发器进水温度每升高2℃,制冷系统COP增加0.16。结果可供双蒸发压缩/喷射制冷系统的设计和运行参考。  相似文献   

15.
宁静红  刘圣春 《化工学报》2018,69(4):1437-1444
提出制冷压缩机排出的高温高压制冷剂气体与制冷剂过冷液体直接接触凝结换热的新型制冷循环,结合自然工质氨的热力特性,分析直接接触凝结制冷循环的热力性能,并与常规双级压缩和单级压缩制冷循环的性能进行对比,得出:随着主循环饱和液温度的升高,直接接触凝结制冷循环的性能系数先增大后减小存在最大值,冷凝器散热量先减小后增大存在最小值,流过蒸发器的制冷剂质量流量逐渐增大。在相同蒸发温度和冷凝温度下,当过冷液体的过冷度为20℃时,较常规双级压缩制冷循环,直接接触凝结制冷循环的性能系数提高4.92%,冷凝器散热量减少6.65%,蒸发器的制冷剂质量流量减少7.2%~7.9%;当过冷液体的过冷度为5℃时,较常规单级压缩制冷循环,直接接触凝结制冷循环的性能系数提高6.52%,冷凝器散热量减少3.32%,蒸发器的制冷剂质量流量减少8.58%~8.91%。结果表明氨直接接触凝结制冷循环较常规制冷循环具有明显的优势。  相似文献   

16.
范俊  庞丽萍  刘道锦  张行  赵淼 《化工学报》2020,71(z2):80-84
现代军用直升机经常执行特殊飞行任务,其机载电子设备具有功率大、瞬间振荡、高热通量等特点,使得环控系统的冷却需求呈指数上升趋势,进而制约着直升机的巡航功能和战斗性能的提升。针对直升机机载大功率电子设备的冷却需求,结合制冷剂、冷却液循环等子系统,搭建地面稳态试验台,针对蒸发器、冷凝器等关键部件进行了地面稳态试验。研究过程采用仿真与试验相结合的方法,开展了制冷循环中蒸发器、冷凝器等关键部件稳态仿真计算,且完成了蒸发器、冷凝器的换热性能试验研究,对所建立的仿真模型进行了有效性校核与参数修正。上述研究可为后续直升机液冷/蒸发制冷系统的关键部件设计提供一定的参考。  相似文献   

17.
At present, the cooling requirement of the high-powered, time-vary and large heat flux airborne avionics on military helicopters is increasing exponentially. In order to improve the performance of military helicopters and solve the cooling requirement of avionics, a new type of liquid cooling system, consisted of a liquid cooling loop and a vapor loop subsystem is developed. Steady state experiments with evaporator and condenser have been carried out on ground. The method of combining simulation with experiment is adopted in research process. The steady-state simulation calculation and experimental performance of evaporator and condenser are carried out in refrigeration cycle. The simulation model is validated and the parameters are revised. The above research can provide some references for the design of key components of helicopter liquid-cooling/evaporative refrigeration system.  相似文献   

18.
根据非平衡吸附条件下系统的动态方程计算了系统各参数的动态变化规律 ,并与实验值进行了对比 ,验证了理论模型的正确性 ,同时通过计算确定了吸附床传热系数、吸附床滞留传热介质量、吸附床加热与冷却介质热容、热源温度、冷却水温度、循环周期等对连续回热型吸附式空调 /热泵系统运行 p -t-x图的影响以及它们对系统运行SCP与COP的影响 ,分析了产生这些影响的机理 ,为该类机型的优化设计与运行奠定了基础  相似文献   

19.
固体吸附-蒸汽喷射式联合制冷循环热力分析   总被引:2,自引:0,他引:2       下载免费PDF全文
将吸附发生器产生的制冷剂蒸汽先进行蒸汽喷射制冷后再进行吸附制冷 ,形成的固体吸附 -蒸汽喷射式联合制冷循环具有较高的性能系数 .对联合循环的热力过程进行了分析 ,并对工作参数对联合循环制冷性能的影响进行了研究 ,结果表明这种联合制冷循环较适用于由高温余热驱动的制冷系统 .  相似文献   

20.
设计了一种基于多功能热管的高效吸附式制冰机组,采用氯化钙/活性炭复合吸附剂和氨作为吸附工质对。吸附床的加热解吸、冷却吸附及回热过程均由热管工作完成,对该新型吸附制冰机组进行了回质回热研究,结果表明,回质回热型循环可使机组的制冷性能系数COP提高25.5 %,加热量减小约13 %,同时冷却器负荷降低约21 %;采用先回质后回热方式,在回质过程中继续加热解吸床可进一步增加机组制冰量。与传统回质相比,系统COP和单位质量吸附剂制冷功率SCP提高幅度均在15 %以上,且机组SCP的提高幅度高于COP的幅度;吸附制冰机组性能随冷却水温度的升高而下降,但系统的SCP始终维持在较高的水平。当冷却水温度为27℃、蒸发温度为-18.9℃时,系统的SCP仍然高达356.5 W·kg-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号