首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this paper are to obtain experimental data of surface tension and interfacial tension, and to develop a new model of Marangoni convection for the best selection of heat transfer additive in ammonia–water absorption systems. The basic mechanism of Marangoni convection in absorption systems was reviewed from the viewpoints of the surface tension and the interfacial tension gradients. Marangoni convection was successfully visualized using a shadow graphic method. The solubility limits of the additives in ammonia–water solution ranged from 500 to 3000 ppm depending on the heat transfer additives. These values are much higher than those in LiBr–H2O solution in which the solubility ranged from 70 to 400 ppm. The temperature gradient of the surface tension should not be a criterion for Marangoni convection inducement in NH3–H2O system. The concentration and temperature gradients of the interfacial tension should not be a criterion for Marangoni convection inducement in NH3–H2O system. The magnitude of the interfacial tension did not affect the occurrence of Marangoni convection either. It was found that addition of the heat transfer additive beyond the solubility limit assisted Marangoni convection occurrence, but should not be a criterion for Marangoni convection inducement. It was proposed that the radical-out model should be a criterion for Marangoni convection inducement within the solubility limit in NH3–H2O system.  相似文献   

2.
The objectives of this paper are to visualize the bubble behavior for an ammonia–water absorption process, and to study the effect of key parameters on ammonia–water bubble absorption performance. The orifice diameter, orifice number, liquid concentration and vapor velocity are considered as the key parameters. The departing bubbles tend to be spherical for surface tension dominant flow, and the bubbles tend to be hemispherical for inertial force dominant flow. A transition vapor Reynolds number is observed at a balance condition of internal absorption potential (by the concentration difference) and external absorption potential (by the vapor inlet mass flow rate). As the liquid concentration increases, the transition Reynolds number and the initial bubble diameter increase. The initial bubble diameter increases with an increase of the orifice diameter while it is not significantly affected by the number of orifices. Residence time of bubbles increases with an increase in the initial bubble diameter and the liquid concentration. This study presents a correlation of initial bubble diameter with ±20% error band. The correlation can be used to calculate the interfacial area in the design of ammonia-water bubble absorber.  相似文献   

3.
The objectives of this paper are to study the effect of key parameters on absorption performance and to develop an experimental correlation of mass transfer coefficient for ammonia–water bubble absorption. The orifice diameter, liquid concentration and vapor velocity are considered as the key parameters. This study successfully visualized the bubble behavior and measured the volumetric diameter of bubbles during the bubble absorption process. The bubble absorption is grouped into two processes, bubble growth (process I) and bubble disappearance (process II), respectively. The following conclusions were drawn from the present study. A new experimental correlation for the volumetric bubble diameter was proposed with ±15% error band, which could be applied to calculate the mass transfer coefficient. The mass transfer coefficient increased with a decrease of the liquid concentration. In process II, the mass transfer coefficient increased with an increase of the Galileo number. Finally, experimental correlations of mass transfer coefficient were developed for processes I and II with ±18% error bands.  相似文献   

4.
In this article, experimental analysis was performed for ammonia–water falling film absorption process in a plate heat exchanger with enhanced surfaces such as offset strip fin. This article examined the effects of liquid and vapor flow characteristics, inlet subcooling of the liquid flow and inlet concentration difference on heat and mass transfer performance. The inlet liquid concentration was selected as 5%, 10% and 15% of ammonia by mass while the inlet vapor concentration was varied from 64.7% to 79.7%. It was found that before absorption started, there was a rectification process at the top of the test section by the inlet subcooling effect. Water desorption phenomenon was found near the bottom of the test section. It was found that the lower inlet liquid temperature and the higher inlet vapor temperature, the higher Nusselt and Sherwood numbers are obtained. Nusselt and Sherwood number correlations were developed as functions of falling film Reynolds Re1, vapor Reynolds number Rev, inlet subcooling and inlet concentration difference with ±15% and ±20% error bands, respectively.  相似文献   

5.
The objectives of this study are to measure the vapor absorption rate and heat transfer rate for falling film flow of binary nanofluids, and to compare the enhancement of heat transfer and mass transfer under the same conditions of nanofluids. The key parameters are the base fluid concentration of LiBr, the concentration of nanoparticles in weight %, and nanoparticle constituents. The binary nanofluids are H2O/LiBr solution with nanoparticles of Fe and Carbon nanotubes (CNT) with the concentrations of 0.0, 0.01 and 0.1 wt %. The vapor absorption rate increases with increasing the solution mass flow rate and the concentration of Fe and CNT nanoparticles. It is found that the mass transfer enhancement is much more significant than the heat transfer enhancement in the binary nanofluids with Fe and CNT. It is also found that the mass transfer enhancement from the CNT nanoparticles becomes higher than that from the Fe nanoparticles. Therefore, the CNT is a better candidate than Fe nanoparticles for absorption performance enhancement in H2O/LiBr absorption system.  相似文献   

6.
The paper proposes an original linear phenomenological theory (Ph T) of evolution physical mono-, bi- and particular polycomponent gas–liquid interactions with non-ideal mixture. The expressions of the phenomenological factors (entropy source, force, coefficient and coupled heat and mass transfer currents) are deduced. The theory is particularized to the NH3/H2O and other gas–liquid systems used in the thermal absorption technology. The work's conclusions are listed next. The paper raises the problem of ammonia bubble absorption which is difficult to answer with current theory of interface mass transfer and absorption as a surface phenomenon. The heat and mass transfer at the gas–liquid interface is governed by the thermodynamic force, which applies also to solid–liquid, solid–gas, or liquid–liquid, gas–gas type interactions and continuous or discontinuous media. The paper mentions a postulate referring to the force behavior approaching an ideal point, previously formulated by the author. According to its consequence, the mass and heat currents suffer an ideal point approaching (i.p.a.) effect, not mentioned so far in the specialized literature, consisting in a continuous increase of their absolute value by several percent (for a pure component), to several hundred times (for a binary system) when the interacting system approaches an ideal state, as compared to the values of states which are far from the same ideal point. In this way, “far from equilibrium” becomes synonymous to “low interaction”. The classic assessment of the interface mass transfer by analogy with heat transfer lacks basic physics. The (Ph T) satisfactorily explains the problem of ammonia bubble absorption. Absorption is a mass phenomenon, not a surface one. An intensive way of improving absorption is emphasized, which seeks to promote the i.p.a. effect appearance rather than the extensive way currently used, based on increasing gas–liquid interaction area. To this extent, the bubble absorber is hereby proposed for efficient absorption. The i.p.a. effect existence offers an additional chance for a satisfactory explanation of the Marangoni effect.  相似文献   

7.
This study deals with a data reduction model for clarifying experimental results of a counter-current slug flow absorber, working with ammonia–water mixture, for significantly low solution flow rate conditions. The data reduction model to obtain the local heat and mass transfer coefficient on the liquid side is proposed by using the drift flux model to analyze the flow characteristics. The control volume method and heat and mass transfer analogy are employed to solve the combined heat and mass transfer problem. As a result, it is found that the local heat and mass transfer coefficient on the liquid side of the absorber is greatly influenced by the flow pattern. The heat and mass transfer coefficient at the frost flow region is higher than that at the slug flow region due to flow disturbance and random fluctuation. The solution flow rate and gas flow rate have influence on the local heat and mass transfer coefficient at the frost flow region. However, it is insignificant at the slug flow region.  相似文献   

8.
The importance of heat and mass transfer additives in absorption chillers and heat pumps has been recognized for over three decades. However, a universally accepted model for the mechanisms responsible for enhanced absorption rates has yet to be proposed. The Marangoni effect—an instability arising from gradients in surface tension at the liquid-vapor interface—is generally accepted as the cause of the convective flows that enhance transfer rates. Certain surfactant additives can significantly improve absorption rates and thus reduce the overall transfer area required by a given machine. Any means available that can increase the efficiency and acceptability of absorption machines is to be welcomed, as this technology provides an alternative to vapor compression systems which is both environmentally friendly and more versatile with regards to energy sources. This study investigates the rate at which a surfactant additive adsorbs at a liquid-vapor interface. The residence time of the falling liquid solution in an absorber is quite short. An effective additive must not only reduce the surface tension of the solution; it must do so quickly enough to cause the Marangoni instability within the short absorption process time. The entrance region of an absorber features a freshly exposed interface at which no surfactant has adsorbed. A numerical model is used to analyze surfactant relaxation rates in a static film of additive-laced solution. Kinetic parameters for the combination of the working pair LiBr-H2O and the additive 2-ethyl-1-hexanol are derived from data in the literature for static and dynamic surface tension measurements. Bulk, interfacial and boundary parameters influencing relaxation rates are discussed for surfactant adsorption occurring in the absence of absorption, as well as for concurrent adsorption and stable vapor absorption. Initial solution conditions and absorption driving force are shown to impact the potential for instability in the effect they have on the rate of interfacial additive adsorption.  相似文献   

9.
This article presents a thermodynamically consistent set of specific enthalpy, entropy, and heat capacity fields for LiBr–H2O solution. The temperatures span from 0 to 190°C, while the concentrations span from 0 to 75 wt%. The work is based on the empirical inputs of Dühring's gradient and intercept, specific heat capacity data at a reference concentration of 50 wt% and density data. These properties have been evaluated using most of the experimental data available in the literature. The present approach circumvents the issue of negative dew point at low temperatures and high concentrations. The information provided in this article could be useful for designers of absorption chillers.  相似文献   

10.
The objectives of this paper are to visualize the bubble behavior by shadow graphic method, to examine the effect of surfactants on the bubble type absorption, and to find the optimal conditions to design highly effective compact absorber for NH3/H2O absorption system. The initial concentrations of NH3/H2O solution and the kinds and the concentrations of surfactants are considered as key parameters. By measuring the absorption rate for each condition, two effects of the addition of surfactants, the Marangoni and the barrier effect, are compared with each other. The results show that the addition of surfactant enhances the absorption performance up to 4.81 times. The experimental correlations of the effective absorption ratio for each surfactant, 2-ethyl-1-hexanol, n-octanol, and 2-octanol, are suggested within ±15, ±10, and ±10%, respectively.  相似文献   

11.
An improved system of NH3–H2O–LiBr was proposed for overcoming the drawback of NH3–H2O absorption refrigeration system. The LiBr was added to NH3–H2O system anticipating a decrease in the content of water in the NH3–H2O–LiBr system. An equilibrium cell was used to measure thermal property of the ternary NH3–H2O–LiBr mixtures. The pressure–temperature data for their vapor–liquid equilibrium (VLE) data were measured at ten temperature points between 15–85 °C, and pressures up to 2 MPa. The LiBr concentration of the solution was chosen in the range of 5–60% of mass ratio of LiBr in pure water. The VLE for the NH3–H2O–LiBr ternary solution was measured statically. The experimental results show that the equilibrium pressures reduced by 30–50%, and the amount of component of water in the gas phase reduced greatly to 2.5% at T=70 °C. The experimental results predicted much better characteristics of the new ternary system than the NH3–H2O system for the applications.  相似文献   

12.
The objectives of this paper are to develop a new method of wettability measurement, to study the effect of micro-scale surface treatment on the wettability across horizontal tubes and to apply it for numerical analysis of heat and mass transfer in a H2O/LiBr falling film absorber. Three types of tubes with roughness are tested in a test rig. Inlet solution temperature (30–50 °C), concentration (55–62 wt.% of LiBr) and mass flow rate (0.74–2.71 kg/min) are considered as key parameters. Reynolds number ranged from 30 to 120 by controlling the inlet mass flow rate. The wettability on the roughened tubes was higher than that for the smooth tubes. The wettability decreased linearly along the vertical location but was proportional to the solution temperature and mass flow rate. The experimental correlations of the wettability for the smooth and the roughened tubes were developed with error bands of ±20 and ±10%, respectively. These are used for the heat and mass transfer analysis of absorbers with micro-scale hatched tubes.  相似文献   

13.
This paper presents an analysis of the influence of the distillation column components size on the vapour enrichment and system performance in small power NH3–H2O absorption machines with partial condensation. It is known that ammonia enrichment is required in this type of systems; otherwise water accumulates in the evaporator and strongly deteriorates the system performance and efficiency. The distillation column analysed consists of a stripping adiabatic section below the column feed point and an adiabatic rectifying packed section over it. The partial condensation of the vapour is produced at the top of the column by means of a heat integrated rectifier with the strong solution as coolant and a water cooled rectifier. Differential mathematical models based on mass and energy balances and heat and mass transfer equations have been developed for each one of the column sections and rectifiers, which allow defining their real dimensions. Results are shown for a given practical application. Specific geometric dimensions of the column components are considered. Different distillation column configurations are analysed by selecting and discarding the use of the possible components of the column and by changing their dimensions. The analysis and comparison of the different column arrangements has been based on the system COP and on the column dimensions.  相似文献   

14.
A mathematical model of a packed bed absorber for aqua-ammonia absorption refrigeration system is presented. The model is used to predict the performance of the bed at various design and operating conditions. The governing equations and the boundary conditions are derived to predict the bed performance. A numerical integral method and an iteration scheme are used to solve the governing one dimensional, non-linear simultaneous differential equations which are subjected to three point boundary value problem. A computer program is prepared and carefully debugged to solve the governing equations with the help of some supporting equations to describe the properties of the working fluids and the heat and mass transfer coefficients in the bed. The analysis show that the absorption process is affected by the following parameters: the volumetric heat rejection model, bed height, vapor and solution flow rates to the bed and the inlet conditions; and packing material type. The effect of changing each of those parameters on the performance of the bed is studied after suggesting a model for the volumetric heat rejection from the bed. The results showed that changing the bed pressure and/or the vapor inlet temperature have negligible effect on the performance of the bed. Changing other parameters are found to affect the performance of the bed by different degrees. Also, the results show that within the present range of parameters, a bed height less than 0.7 m guarantees an absorption efficiency better than 91%.

Résumé

On présente un modèle mathématique d'un matelas dispersant dans un système frigorifique à absorption à ammoniac/eau. On utilise ce modèle pour prévoir la performance du matelas utilisant diverses conceptions et sous diverses conditions de fonctionnement. On établit des équations qui décrivent ce processus et les conditions limites afin de prévoir la performance du matelas. On utilise une méthode numérique intégrale et un schéma d'itération afin de résoudre les équations unidimensionnelles, non-linéaires, simultanées et différentielles, qui sont soumises au problème des limites à trois points. Un programme informatique est préparé et débogué afin de résoudre les équations qui gouvernent le processus étudié, avec l'aide de quelques équations supplémentaires qui décrivent les caractéristiques des fluides actifs et les coefficients de transmission thermique et de transfert d'énergie massique du matelas. L'analyse montre que le processus d'absorption est influencé par des paramètres suivants: le modèle de rejet de chaleur volumétrique, la hauteur du matelas, les débits d'écoulement de la vapeur et de la solution vers le matelas, les conditions d'entrée et le matériau dispersant utilisé. On étudie également l'influence de la variation de chacun de ces paramètres sur la performance du matelas apres avoir proposé un modèle de rejet de chaleur volumétrique par le matelas. Les résultats montrent que si on change la pression dans le matelas et/ou la température de la vapeur à l'arrivée, de tels changements ont un effet negligeable sur le matelas. Suite au changement d'autres paramètres, la performance du matelas a été modifée de diverses façons. Les résultats montrent également qu'avec les paramètres adoptés ici, une hauteur du matelas inférieure à 0,7 m assure un taux d'absorption supérieur à 91%.  相似文献   

15.
This paper proposes a new working fluid for refrigeration cycles utilizing low temperature heat sources. The proposed working fluid consists of the ammonia–water working fluid mixture and a salt. The salt is used to aid the removal of ammonia from the liquid solution. This effect is a manifestation of the well known “salting-out” effect. While the addition of salt improves the generator performance, it also has a detrimental effect on the absorber. The overall effects on the performance of three absorption cycles using the NH3–H2O–NaOH working fluid have been investigated using computer simulations. The results indicated that salting out can lower the generator operating temperature while simultaneously improving the cycle performance. Furthermore, limiting the salt to the generator suggests potential for further improvement in cycle performance.  相似文献   

16.
Heat/mass transfer enhancement additives used in aqueous lithium bromide absorption chillers are surfactants that lower the surface tension of the working fluid. It has long been speculated that the surface tension characteristics are a key to the enhancement but the point is controversial because some surfactants do not provide enhancement. In the present study, the surface tension of aqueous lithium bromide was measured, with and without various surfactant additives, using a drop weight method. Measurements were also made on water, with and without an additive. The results provide new information that clarifies several confusing aspects of the literature data. The major result is the realization that the surface tension of aqueous lithium bromide is strongly affected by the presence of surfactant vapor around the liquid interface. This apparently explains the large differences in surface tension data found in the literature since no previous studies mentioned the importance of the vapor conditions.  相似文献   

17.
This article develops a general thermodynamic framework for the modeling of an irreversible absorption chiller at the design point, with application to a single-stage ammonia–water absorption chiller. Component models of the chiller have been assembled so as to quantify the internal entropy production and thermal conductance (UA) in a thermodynamically rigorous formalism, which is in agreement with the simultaneous heat-and-mass transfer processes occurring within the exchangers. Local thermodynamic balance (viz. energy, entropy, and mass balance) and consistency within the components is respected, in addition to the overall thermodynamic balance as determined by the inlet and outlet states of the components. For the absorbers, Colburn-and-Drew mass transfer equations are incorporated to describe the absorption process. Furthermore, the impact of various irreversibilities on the performance of chiller is also evaluated through the use of a general macroscopic equation.  相似文献   

18.
In this paper, the thermoeconomic concept is applied to the optimization of a double-effect H2O/LiBr VAR system, aimed at minimizing its overall product cost. A simplified cost minimization methodology based on the thermoeconomic concept is applied to calculate the economic costs of all the internal flows and products of the system by formulating thermoeconomic cost balances. Once these costs are determined, the system is thermoeconomically evaluated to identify the effects of the design variables on cost of the flows and products. This enables to suggest changes of the design variables that would make the overall system cost-effective. Finally, an approximate optimum design configuration is obtained by means of an iterative procedure. The result shows significant improvement in the system performance. The sensitivity analysis shows that the changes in optimal values of the decision variables are negligible with changes in the fuel cost.  相似文献   

19.
The absorber is an important component in absorption machines and its characteristics have significant effect on the overall efficiency of absorption machines. This article reports on the results of experimental studies on the characteristics for a falling film absorber which is made up of 24 row horizontal smooth tubes. It shows that while the mass transfer coefficient is increased with the increase of spray density, the heat transfer coefficient is increased only in small spray density range. There is an optimum spray density between 0.005 and 0.055 kg s−1 m−1 spray density at which the heat transfer coefficient is maximum. The heat transfer coefficient (Nusselt number), which is traditionally expressed using Reynolds number and Prandtl number, was modified taking the effect of inlet solution concentration into account. The results can be used to optimize the future design of absorption machines having a falling film absorber and using LiBr/H2O as working fluid.

Abstract

L'absorbeur est un composant important des systèmes à absorption et ses caractéristiques exercent des effets significatifs sur l'efficacité des machines à absorption. Cet article présent des résultats obtenus dans des études expérimentales sur les caracteristiques d'un absorbeur à film tombant composé d'une rangée de 24 tubes lisses horizontaux. Les auteurs montrent que le coefficient de transfert de masse augmente avec la densité de pulvérisation, le coefficient de transfert de chaleur augmente uniquement dans la gamme des densités de pulvérisation faibles. Il existe une densité de pulvérisation optimale (0,005–0,055 kg s−1 m−1) pour laquelle le coefficient de transfert de chaleur est maximal. Le coefficient de transfert de chaleur (nombre de Nusselt), qui est généralement exprimé en utilisant le nombre de Reynolds et le nombre de Prandtl, a été modifié en tenant compte l'effet de la concentration de la solution à l'entrée. A l'avenir, les résultats peuvent être utilisés pour optimiser la conception des systèmes à absorption à absorbeur à film tombant utilisant le LiBr/H2O comme fluide actif.  相似文献   

20.
This paper describes the experiment carried out to analyze the performance of a refrigeration system in cascade with ammonia and carbon dioxide as working fluids. The effect of operation parameters, such as the evaporating temperature of the low temperature cycle, the condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and superheat degree, on the system performance was investigated. Performance of the cascade system with NH3/CO2 was compared with that of two-stage NH3 system and single-stage NH3 system with or without economizer. It was found that the COP of the cascade system is the best among all the systems, when the evaporating temperature is below −40 °C. Also, the cascade system performance is greatly affected by evaporating temperature, condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and is only slightly sensitive to superheat degree. All the experimental results indicate that the NH3/CO2 cascade system is very competitive in low temperature applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号