首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dc conductivity of a sintered sample of Y2O3 containing an excess of lower-valent metal (Ml) impurities has been measured at 600° to 1100°C in air as a function of the water vapor pressure (0.4 to 3000 Pa). The logarithm of the p -type conductivity vs log P H2o has a slope of – 1/2 in certain regions of F H2o and temperature. This reflects a defect situation where interstitial protons from water vapor balance the excess of lower-valent cation impurities: [H˙] = [M1']. The activation energy for the p -type conductivity under these conditions is evaluated and interpreted in terms of the enthalpy needed to dissolve interstitial protons in yttria.  相似文献   

2.
The effects of heat treatment in Ar-O2 and H2-H2O atmospheres on the flexural strength of hot isostatically pressed Si3N4 were investigated. Increases in room-temperature strength, to values significantly above that of the aspolished material, were observed when the Si3N4 was exposed at 1400°C to (1) H2 with water vapor pressure ( P H2O) greater than 1 × 10−4 MPa or (2) Ar with oxygen partial pressure ( P O2) of between 7 × 10−6 and 1.5 × 10−5 MPa. However, the strength of the material was degraded when the P H2O in H2 was lower than 1 × 10−4 MPa, and essentially unaffected when the P O2 in Ar was higher than 1.5 × 10−5 MPa. We suggest that the observed strength increases are the result of strength-limiting surface flaws being healed by a Y2Si2O7 layer formed during exposure.  相似文献   

3.
Studies of the oxidation of Gd and Dy at P O2's from 10−0.3 to 10−14.5 atm and temperatures from 727° to 1327°C indicate both semiconducting and ionic-conducting domains in the sesquioxides formed. At higher temperatures, where dense coarsegrained oxide layers developed, the rate of oxidation in the high- P 02 semiconducting domain yielded oxygen diffusion coefficients in Dy2O3 in excellent agreement with literature values derived from oxidation of partially reduced oxide single crystals. Under the same conditions, the oxidation of Gd yielded oxygen diffusion coefficients in cubic Gd2O3 which are considerably below literature values for monoclinic single-crystal Gd2O3. At lower temperatures, porous scales were formed, and apparent diffusion coefficients derived from oxidation rates show a smaller temperature dependence than the high-temperature data. At low P O2, the oxides behave as ionic conductors, and metal oxidation rates result in estimates of the electronic contribution to the electrical conductivity of the order of 10−6 to 10−7Ω−1 cm−1.  相似文献   

4.
The sintering kinetics of submicrometer Fe3O4 and Fe2O3 powders were investigated at 300° to 500°C. Using measurements of the rate of reduction of surface area, the coefficients of surface diffusion on the oxides are estimated for a range of oxygen partial pressures. The surface-diffusion coefficients appear to be independent of P O2 for magnetite and only slightly dependent on P O2 for hematite.  相似文献   

5.
The ionic conductivity of cubic solid solutions in the system CaO -Y2O3-ZrO2 was examined. Particular Y2O3-ZrO2 binary compositions were more conductive at elevated temperatures (>600°C) than either CaO-ZrO2 binary or CaO-Y2O3-ZrO2 ternary compositions. The higher ionic conductivity appears to be related to a lower activation energy rather than to the number of oxygen vacancies dictated by composition. Those compositions of highest conductivity lie close to the cubic-monoclinic solid-solution phase boundary. Conductivity-temperature data are presented that indicate a reversible order-disorder transition for Y2O3-ZrO2 cubic solid solutions containing 20 and 25 mole % Y2O3. The transference number for the oxygen ion at 1000°C for Y2O2-ZrO2 cubic solid solutions is greater than 0.99.  相似文献   

6.
Equilibrium electrical conductivity data for large-grained, poly crystalline, undoped BaTiO3, as a function of temperature, 750° to 1000°C, and oxygen partial pressure, 10−20< P O2<10−1 MPa, were quantitatively fit to a defect model involving only doubly ionized oxygen vacancies, electrons, holes, and accidental acceptor impurities. The latter are invariably present in sufficient excess to control the defect concentrations through the compensating oxygen vacancies, except under the most severely reducing conditions. Singly ionized oxygen vacancies play no discernible role in the defect chemistry of BaTiO3 within this experimental range. The derived accidental acceptor content has a slight temperature dependence which may reflect some small amount of defect association. Deviation of the conductivity minima from the ideal shape yields a small P O2-independent conductivity contribution, which is tentatively identified as oxygen vacancy conduction.  相似文献   

7.
The phase equilibria in the Y2O3-Nb2O5 system have been studied at temperatures of 1500° and 1700°C in the compositional region of 0-50 mol% Nb2O5. The solubility limits of the C-type Y2O3 cubic phase and the YNbO4 monoclinic phase are 2.5 (±1.0) mol% Nb2O5 and 0.2 (±0.4) mol% Y2O3, respectively, at 1700°C. The fluorite (F) single phase exists in the region of 20.1-27.7 mol% Nb2O5 at 1700°C, and in the region of 21.1-27.0 mol% Nb2O5 at 1500°C, respectively. Conductivity of the Y2O3- x mol% Nb2O5 system increases as the value of x increases, to a maximum at x = 20 in the compositional region of 0 ≤ x ≤ 20, as a result of the increase in the fraction of F phase. In the F single-phase region, the conductivity decreases in the region of 20-25 mol% Nb2O5, because of the decrease in the content of oxygen vacancies, whereas the conductivity at x = 27 is larger than that at x = 25. The conductivity decreases as the value of x increases in the region of 27.5 ≤ x ≤ 50, because of the decrease in the fraction of F. The 20 mol% Nb2O5 sample exhibits the highest conductivity and a very wide range of ionic domain, at least up to log p O2=−20 (where p O2 is given in units of atm), which indicates practical usefulness as an ionic conductor.  相似文献   

8.
Electrical conductivity, thermoelectric power, and weight change were measured for polycrystalline Ta2O5 from 900° to 1400°C. The predominant ionic and electronic defects in this temperature range are oxygen vacancies and electrons. The oxygen-vacancy and electron mobilities are 8.1 × 103exp (−1.8 eV/ k T) and ∼0.05 cm2/V-s, respectively. At O2 partial pressures near 1 atm, the ionic-defect concentration is essentially fixed by the presence of lower-valence cation impurities, and the total electrical conductivity is predominantly ionic, whereas at low P o2's the conductivity is electronic and proportional to P P o2−1/6.  相似文献   

9.
The phase equilibria in the zirconia-rich part of the system ZrO2−Yb2O3−Y2O3 were determined at 1200°, 1400°, and 1650°C. The stabilizing effects of Yb2O3 and Y2O3 were found to be quite similar with <10 mol% of either being necessary to fully stabilize the cubic fluorite-structure phase at 1200°C. The two binary ordered phases, Zr3Yb4O12 and Zr3Y4O12, are completely miscible at 1200°C. These were the only binary or ternary phases detected. The ionic conductivities of ternary specimens in this system were measured using the complex impedance analysis technique. For a given level of total dopant, the substitution of Yb2O3 for Y2O3 gives only minor increases in specimen conductivity.  相似文献   

10.
The secondary phase constitution in two sintered AIN ceramics (1.8% and 4.2% Y2O3 additions) was studied as a function of heat treatment temperatures between 1750° and 1900°C under pure nitrogen atmosphere. The effect of the phase constitution on the physical properties, such as density, thermal conductivity ( K ), and lattice constants, and on the mechanical properties in three-point bending, was also investigated. Y3Al5O12 was found to getter dissolved oxygen from the AIN lattice below 1850°C, but evaporated at 1850°C and above. Y4Al2O9 appeared to sublimate below 1850°C in the atmosphere used in this study. Depending on the secondary phase constitution, heat treatment affected thermal conductivity favorably or adversely. Occasionally, samples with similar lattice oxygen contents were found to have different thermal conductivities, suggesting that factors besides dissolved oxygen can also influence K . Lattice parameter measurements indicated that, within the small range of lattice oxygen concentrations in the AIN samples studied, the c-axis was more sensitive than the a -axis to oxygen content.  相似文献   

11.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

12.
The compressive creep behavior and oxidation resistance of an Si3N4/Y2Si2O7 material (0.85Si3N4+0.10SiO2+0.05Y2O3) were determined at 1400°C. Creep re sistance was superior to that of other Si3N4 materials and was significantly in creased by a preoxidation treatment (1600°C /120 h). An apparent parabolic rate constant of 4.2 × 10−11 kg2·m-4·s−1 indicates excellent oxidation resistance.  相似文献   

13.
Phase relations in the quasi-ternary system MgO-V2O3-VO2 at 1200°C were studied using the quenching technique under controlled O2 atmospheres. A new phase of a type z VO y Mg2− x V1+ x O4 (0< x <1, y ≥1.5, z >0) was found with a compositional region along the MgV2O4-Mg2VO4 join. Equilibrium P O 2 observed for Mg2− x V1+ x O4 is quite different from that for V n O2 n -1 with an equal ratio of V3+/V4+, corresponding to the V3+ stabilities in two types of compounds. Thus, the phase relations in the ternary system were constructed on a conventional triaxial diagram as a function of P O2.  相似文献   

14.
The phase relations for the system y2o3–Ta2o5 in the composition range 50 to 100 mol% Y2O3 have been studied by solid-state reactions at 1350°, 1500°, or 17000C and by thermal analyses up to the melting temperatures. Weberite-type orthorhombic phases (W2 phase, space group C2221), fluorite-type cubic phases (F phase, space group Fm3m )and another orthorhombic phase (O phase, space group Cmmm )are found in the system. The W2 phase forms in 75 mol% Y2O3 under 17000C and O phase in 70 mol% Y2O3 up to 1700°C These phases seem to melt incongruently. The F phase forms in about 80 mol% Y2O3 and melts congruently at 2454° 3°C. Two eutectic points seem to exist at about 2220°C 90 mol% Y2O3, and at about 1990°C, 62 mol% Y2O3. A Phase diagram including the above three phases were not identified with each other.  相似文献   

15.
Compositions in the system ThO2-YO1.5 were coprecipitated as oxalates and converted to oxides. Disks were pressed and sintered in oxygen at 1400° to 2200°C. Densities of the sintered disks were 96 to 98% of theoretical. Solid solutions with the fluorite-type structure were formed up to 20 to 25 mole % YO1.5 at 1400°C and up to 45 to 50 mole % YO1.5 at 2200°C. Density data showed that these solid solutions correspond to Th1— x Y x O2—0.5 x , having a complete cation sub-lattice filled by Th4+ and Y3+ ions, and vacancies in the anion sublattice. The observed increase in electrical conductivity with increase in YO1.5content is consistent with charge transport by oxygen ions through a vacancy mechanism. Approximately 7 mole % ThO2 is soluble in YO1.5 at 2200°C. Density results indicate an anion interstitial structure for the Y2O3 phase. Transference number measurements indicate that the electrical conductivities are only partly due to ions.  相似文献   

16.
Small amounts of Li2O result in sintering in the AIN-Y2O3-CaO and AIN-CaO systems at firing temperatures <1600°C. The effect is ascribed to reduction of the liquidus temperature. Furthermore, Li2O is removed by volatization at temperatures from 1300° to 1600°C, and its content decreases several ppm from the initial 0.3 wt%. Li2O-doped AIN specimens containing Y2O3 and CaO additives are well densified by firing at 1600°C for 6 h, and their thermal conductivity is 135 W.m−1.K−1.The effect of Li2O addition on sintering and thermal conductivity also is discussed through thermo-dynamic considerations.  相似文献   

17.
Guarded measurements of the electrical conductivity of high-purity, polycrystalline Y2O3 in thermodynamic equilibrium with the gas phase were made under controlled temperature and oxygen partial pressure conditions. Data are presented as isobars from 1200° to 1600°C, and as isotherms from oxygen partial pressures of 10−1 to 10−17 atm. The ionic contribution to the total conductivity, determined by the blocking electrode polarization technique, was less than 1% over the entire range of temperatures and oxygen partial pressures studied. Yttria is shown to be an amphoteric semiconductor with the region of predominant hole conduction shifting to higher pressures at higher temperatures. In the region of p -type conduction, the conductivity is represented by the expression σ= 1.3 × 103 p O23/16 exp (-1.94/kT). The observed pressure dependence is attributed to the predominance of fully ionized yttrium vacancies. Yttria is shown to be a mixed conductor below 900°C.  相似文献   

18.
The purpose of this study was to identify and correlate the microstructural and luminescence properties of europium-doped Y2O3 (Y1– x Eu x )2O3 thin films deposited by metallorganic chemical vapor deposition (MOCVD), as a function of deposition time and temperature. The influence of deposition parameters on the crystallite size and microstructural morphology were examined, as well as the influence of these parameters on the photoluminescence emission spectra. (Y1– x Eu x )2O3 thin films were deposited onto (111) silicon and (001) sapphire substrates by MOCVD. The films were grown by reacting yttrium and europium tris(2,2,6,6-tetramethyl–3,5-heptanedionate) precursors with an oxygen atmosphere at low pressures (5 torr (1.7 × 103 Pa)) and low substrate temperatures (500°–700°C). The films deposited at 500°C were smooth and composed of nanocrystalline regions of cubic Y2O3, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600°C developed, with increasing deposition time, from a flat, nanocrystalline morphology into a platelike growth morphology with [111] orientation. Monoclinic (Y1– x Eu x )2O3 was observed in the photoluminescence emission spectra for all deposition temperatures. The increase in photoluminescence emission intensity with increasing postdeposition annealing temperature was attributed to the surface/grain boundary area-reduction effect.  相似文献   

19.
Subsolidus phase relations in the low-Y2O3 portion of the system ZrO2-Y2O3 were studied using DTA with fired samples and X-ray phase identification and lattice parameter techniques with quenched samples. Approximately 1.5% Y2O3 is soluble in monoclinic ZrO2, a two-phase monoclinic solid solution plus cubic solid solution region exists to ∼7.5% Y2O3 below ∼500°C, and a two-phase tetragonal solid solution plus cubic solid solution exists from ∼1.5 to 7.5% Y2O3 from ∼500° to ∼1600°C. At higher Y2O3 compositions, cubic ZrO2 solid solution occurs.  相似文献   

20.
Lattice parameters of RE4Al2O9 (RE = Y, Sin, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb) prepared at 1600–1800°C and those of RE4Ga2O9 (RE = La, Pr, Nd, Sm, Eu, and Gd) prepared at 1400–1600°C were refined by Rietveld analysis for the X-ray powder diffraction patterns. The parameters increased linearly with the ionic radius of the trivalent rare-earth elements ( r RE). High-temperature differential calorimetry and dilatometry revealed that both RE4Al2O, and RE4Ga2O, have reversible phase transitions with volume shrinkages of 0.5–0.7% on heating and thermal hystereses. The transition temperatures (7tr) decreased from 1300°C (Yb) to 1044°C (Sm) for RE4A12O9, except for Y4Al2O9 ( Ttr = 1377°C), and from 1417°C (Gd) to 1271°C (La) for RE4Ga2O, with increasing ionic radius of the rare-earth elements. These transition temperatures were plotted on a curve against the ionic radius ratio of Al3+ or Gd3+ and RE3+ ( r A1Ga/rRE) except for Y4Al2O9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号