首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For pt.I see ibid., vol.16, no.5, p.412-427 (2005). Dynamic network reconfiguration is defined as the process of changing from one routing function to another while the network remains up and running. The main challenge is in avoiding deadlock anomalies while keeping restrictions on packet injection and forwarding minimal. Current approaches either require virtual channels in the network or they work only for a limited set of routing algorithms and/or fault patterns. In this paper, we present a methodology for devising deadlock free and dynamic transitions between old and new routing functions that is consistent with newly proposed theory [J. Duato et al., (2005)]. The methodology is independent of topology, can be applied to any deadlock-free routing function, and puts no restrictions on the routing function changes that can be supported. Furthermore, it does not require any virtual channels to guarantee deadlock freedom. This research is motivated by current trends toward using increasingly larger Internet and transaction processing servers based on clusters of PCs that have very high availability and dependability requirements, as well as other local, system, and storage area network-based computing systems.  相似文献   

2.
High-speed local area networks (LANs) consist of a set of switches interconnected by point-to-point links, and hosts linked to those switches through a network interface card. High-speed LANs may change their topology due to switches being turned on/off, hot expansion, link remapping, and component failures. In these cases, a distributed reconfiguration protocol analyzes the topology, computes the new routing tables, and downloads them to the corresponding switches. Unfortunately, in most cases, user traffic is stopped during the reconfiguration process to avoid deadlock. These strategies are called static reconfiguration techniques. Although network reconfigurations are not frequent, static reconfiguration such as this may take hundreds of milliseconds to execute, thus degrading system availability significantly. Several distributed real-time applications have strict communication requirements; Distributed multimedia applications have similar, although less strict, quality of service (QoS) requirements. Both stopping packet transmission and discarding packets due to the reconfiguration process prevent the system from satisfying the above requirements. Therefore, in order to support hard real-time and distributed multimedia applications over a high-speed LAN, we need to avoid stopping user traffic and discarding packets when the topology changes. In this paper, we propose a new deadlock-free distributed reconfiguration protocol that is able to asynchronously update routing tables without stopping user traffic. This protocol is valid for any topology, including regular as well as irregular topologies. It is also valid for packet switching as well as for cut-through switching techniques and does not rely on the existence of virtual channels to work. Simulation results show that the behavior of our protocol is significantly better than for other protocols based on stopping user traffic  相似文献   

3.
This paper identifies performance degradation in wormhole routed k-ary n-cube networks due to limited number of router-to-processor consumption channels at each node. Many recent research in wormhole routing have advocated the advantages of adaptive routing and virtual channel flow control schemes to deliver better network performance. This paper indicates that the advantages associated with these schemes cannot be realized with limited consumption capacity. To alleviate such performance bottlenecks, a new network interface design using multiple consumption channels is proposed. To match virtual multiplexing on network channels, we also propose each consumption channel to support multiple virtual consumption channels. The impact of message arrival rate at a node on the required number of consumption channels is studied analytically. It is shown that wormhole networks with higher routing adaptivity, dimensionality, degree of hot-spot traffic, and number of virtual lanes have to take advantage of multiple consumption channels to deliver better performance. The interplay between system topology, routing algorithm, number of virtual lanes, messaging overheads, and communication traffic is studied through simulation to derive the effective number of consumption channels required in a system. Using the ongoing technological trend, it is shown that wormhole-routed systems can use up to two-four consumption channels per node to deliver better system performance  相似文献   

4.
大规模并行处理机系统(MPP)中路由算法对互联网络通信性能和系统性能起着重要作用。自适应路由算法具有灵活性好、网络的通道利用率高和网络容错能力强等优点,但其实现难度较大,因而目前仅在少数MPP系统中得以实现。文中在mesh结构上提出了一个低代价无死锁的安全自适应最短虫孔路由算法LCFAA,该算法所需虚通道数少,具有代价低、自适应性强的特点。文中证明了算法的无死锁、无活锁性和完全自适应性,并模拟验证  相似文献   

5.
Networks of workstations are becoming increasingly popular as a cost-effective alternative to parallel computers. Typically, these networks connect workstations using irregular topologies, providing the wiring flexibility, scalability, and incremental expansion capability required in this environment. Recently, we proposed two methodologies for the design of adaptive routing algorithms for networks with irregular topology, as well as fully adaptive routing algorithms for these networks. These algorithms increase throughput considerably with respect to previously existing ones, but require the use of at least two virtual channels. In this paper, we propose a very efficient flow control protocol to support virtual channels when link wires are very long and/or have different lengths. This flow control protocol relies on the use of channel pipelining and control flits. Control traffic is minimized by assigning physical bandwidth to virtual channels until the corresponding message blocks or it is completely transmitted. Simulation results show that this flow control protocol performs as efficiently as an ideal network with short wires and flit-by-flit multiplexing. The effect of additional virtual channels per physical channel has also been studied, revealing that the optimal number of virtual channels varies with network size. The use of virtual channel priorities is also analyzed. The proposed flow control protocol may increase short message latency, due to long messages monopolizing channels and hindering the progress of short messages. Therefore, we have analyzed the impact of limiting the number of flits (block size) that a virtual channel may forward once it gets the link. Simulation results show that limiting the maximum block size causes the overall network performance to decrease  相似文献   

6.
This paper presents fault-tolerant protocols for fast packet switch networks withconvergence routing. The objective is to provide fast reconfiguration and continuous host-to-host communication after a link or a node (switch) failure,Convergence routingcan be viewed as a variant ofdeflection routing,which combines, in a dynamic fashion, the on-line routing decision with the traffic load inside the network. Unlike other deflection techniques, convergence routing operates withglobal sense of directionand guarantees that packets will reach or converge to their destinations. Global sense of direction is achieved by embedding of virtual rings to obtain a linear ordering of the nodes. We consider virtual ring embeddings over (i) a single spanning tree, and (ii) over two edge-disjoint spanning trees. Thus, the fault-tolerant solution is based on spanning trees and designed for a switch-based (i.e., arbitrary topology) architecture called MetaNet. In this work, the original MetaNet's convergence routing scheme has been modified in order to facilitate the property that the packet header need not be recomputed after a failure and/or a reconfiguration. This is achieved by having, at the network interface, a translator that maps the unique destination address to a virtual address. It is argued that virtual rings embedded over two-edge disjoint spanning trees increase the fault tolerance for both node and link faults and provides continuous host-to-host communication.  相似文献   

7.
Virtual channels yield significant improvement in the performance of wormhole-routed networks as they can greatly reduce message blocking over network resources. K-ary n-cubes with deterministic routing have been widely analysed using analytical modelling tools. Most existing models, however, have either entirely ignored the effects of virtual channel multiplexing or have not considered the impact of virtual channels allocation on message latency. This paper discusses two different organisations of virtual channels in k-ary n-cubes, resulting in two deterministic routing algorithms. It then proposes an analytical model to compute message latency for the two routing algorithms. The proposed model is used in a case study to demonstrate the sensitivity of network latency to the way virtual channels are allocated to messages.  相似文献   

8.
A deadlock-free fully adaptive minimal routing algorithm for meshes that is optimal in the number of virtual channels required and in the number of restrictions placed on the use of these virtual channels is presented. It is also proved that, ignoring symmetry, this routing algorithm is the only fully adaptive routing algorithm with uniform routers that achieves both of these goals. This new algorithm requires only 4n-2 virtual channels for an n-dimensional mesh. In addition, if more than the minimum number of virtual channels is available, the routing algorithm can use these additional channels with the fewest possible number of restrictions. The proofs are first presented for the 2D mesh and then generalized to n-dimensional meshes.  相似文献   

9.
This paper introduces a generic methodology for defining deadlock-free wormhole routing schemes in any arbitrary network. The basic strategy is to partition a graph into subdigraphs with no cyclic dependencies and selectively assign virtual channels. The usefulness of our scheme is shown for the n-dimensional hypercube, the n-dimensional mesh, and the k-ary n-cube torus by identifying subdigraph characteristics that ensure acyclic routing. Further generalization which allows partial cyclic dependencies without deadlock is achieved by our extended generic methodology. We also illustrate how to identify shortest fixed path and nonminimal adaptive routing schemes using minimum required channels.  相似文献   

10.
Dynamic network reconfiguration is described as the process of replacing one routing function with another while the network keeps running. The main challenge is avoiding deadlock anomalies while keeping limitations on packet injection and forwarding minimal. Current approaches which have a high complexity and as a result have a limited practical applicability either require the existence of extra network resources, or they will affect the network performance during the reconfiguration process. In this paper we present a simple, fast and efficient mechanism for dynamic network reconfiguration which is based on regressive deadlock recovery instead of avoiding deadlock. The mechanism which is referred to as PDR guarantees a deadlock-free reconfiguration based on wormhole switching. In PDR, a particular approach is taken to handle both deadlocks and performance degradation. We propose the use of a packet injection restriction mechanism that prevents performance degradation near the saturation by controlling the network traffic. Further, in this approach, to accurately detect deadlocks, the deadlock detection mechanism is implemented and also improved by using only the local information, thereby considerably reducing false deadlock detections. In the rare cases when deadlocks are suspected, we propose a new technique that absorbs the deadlocked packet at the current node instead of dropping deadlocked packets and re-injects it later into the network. The main advantage of this method is its simplicity and also it does not require any additional buffers in intermediate nodes to handle deadlocks. It requires only some buffer space in the local node to temporarily hold the deadlocked packets removed from the network. Evaluating results reveal that the mechanism shows substantial performance improvements over the other methods and it works efficiently in different topologies with various routing algorithms.  相似文献   

11.
The selection of a topology is essential to the performance of interconnection networks, so designing a new, cost-effective topology is very significant. 2D mesh is one of the most popular topologies. However, the diameter and average distance of a 2D mesh are large enough to greatly influence the performance of the network. This paper presents a novel topology called TM, which combines the advantages of both a 2D torus and a 2D mesh. For an n×n network, the total number of links in a TM is the same as that in a mesh, while the diameter of a TM is extremely close to that of a torus. Besides, the average distance of a TM is at the middle of that of a torus and that of a mesh. To prevent deadlocks in TMs, a virtual network partitioning scheme is adopted into the TM network. Moreover, both of the deterministic and fully-adaptive routing techniques in TMs are proposed in this paper. Compared to mesh, the TM network provides average distance and diameter reduction, which contributes to the performance enhancement. Sufficient simulation results are presented to show the effectiveness of the TM network, and the new routing schemes proposed for it, by comparing with the mesh network. Compared to the torus, which requires at least 3 virtual channels to support fully-adaptive routing, the TM network can support fully-adaptive routing with only 2 virtual channels. Seen from the experimental results, in most cases, the performance of TM is worse than the torus, while in some cases, the performance of TM is comparable to torus or even better than the torus.  相似文献   

12.
Routing is a key design parameter in the interconnection network of large parallel computers . Routing algorithms are classified into two different categories depending on the number of routing options available for each source–destination pair: deterministic (there is one path available) and adaptive (there are several ones). Adaptive routing has two opposed effects on network performance. On one hand, it provides routing flexibility that may help on avoiding a congested network area, thus improving network performance. On the other hand, it also may increase the Head-of-Line blocking effect due to more destination nodes sharing the port queues. Usually, adaptive routing uses virtual channels to provide routing flexibility and to guarantee deadlock freedom. Deterministic routing is simpler, which implies lower routing delay and it introduces less Head-of-Line blocking effect. In this paper, we propose an adaptive and HoL-blocking reduction routing algorithm for direct topologies that tries to combine the good properties of both worlds: It provides routing flexibility but also reduces the Head-of-Line blocking effect. To do that, this paper proposes several functions which use the XOR operation to efficiently distribute the packets among virtual channels based on their destination node. The resulting routing mechanisms have different properties depending on whether they enforce routing flexibility or Head-of-Line blocking reduction.  相似文献   

13.
The use of adaptive routing in a multicomputer interconnection network improves network performance by using all available paths and provides fault tolerance by allowing messages to be routed around failed channels and nodes. Two deadlock-free adaptive routing algorithms are described. Both algorithms allocate virtual channels using a count of the number of dimension reversals a packet has performed to eliminate cycles in resource dependency graphs. The static algorithm eliminates cycles in the network channel dependency graph. The dynamic algorithm improves virtual channel utilization by permitting dependency cycles and instead eliminating cycles in the packet wait-for graph. It is proved that these algorithms are deadlock-free. Experimental measurements of their performance are presented  相似文献   

14.
Convex Subspace Routing (CSR) is a novel approach for routing in sensor networks using anchor-based virtual coordinates. Unlike geographical routing schemes that require physical location information of nodes, obtaining which is often difficult, error-prone and costly, the Virtual Coordinate (VC) based schemes simply characterize each node by a vector of shortest hop distances to a selected subset of nodes known as anchors. Even though VC based routing (VCR) schemes benefits from having connectivity information implicitly embedded within the VCs, VCs lack the directional information available with physical coordinates. The major issues affecting routing using VCs are addressed. Due to local minima problem in the virtual space, the VCR schemes rely on backtracking or hill climbing techniques to overcome the local minima. Convex Subspace Routing, in contrast, avoids using anchors that cause local minima. It dynamically selects subsets of anchors that define subspaces to provide convex distance functions from source to destination. Consequently, it is less sensitive to anchor placement and over anchoring, and does not require tracking route history for backtracking, resulting in shorter packet lengths and energy efficient operation. Three techniques for selection of convex subspaces are proposed and evaluated. Performance evaluation for several different network topologies indicates that CSR significantly outperforms the existing VCR scheme, Logical Coordinate Routing (LCR), while being competitive with geographic coordinate based Greedy Perimeter Stateless Routing (GPSR), even though latter makes use of node location information.  相似文献   

15.
Layered routing in irregular networks   总被引:1,自引:0,他引:1  
Freedom from deadlock is a key issue in cut-through, wormhole, and store and forward networks, and such freedom is usually obtained through careful design of the routing algorithm. Most existing deadlock-free routing methods for irregular topologies do, however, impose severe limitations on the available routing paths. We present a method called layered routing, which gives rise to a series of routing algorithms, some of which perform considerably better than previous ones. Our method groups virtual channels into network layers and to each layer it assigns a limited set of source/destination address pairs. This separation of traffic yields a significant increase in routing efficiency. We show how the method can be used to improve the performance of irregular networks, both through load balancing and by guaranteeing shortest-path routing. The method is simple to implement, and its application does not require any features in the switches other than the existence of a modest number of virtual channels. The performance of the approach is evaluated through extensive experiments within three classes of technologies. These experiments reveal a need for virtual channels as well as an improvement in throughput for each technology class.  相似文献   

16.
虚网叠加构造自适应路由算法的有效框架   总被引:2,自引:0,他引:2  
大规模并行处理机系统中路由算法对互联网络通信性能和系统性起着重要作用。  相似文献   

17.
段新明  武继刚  张大坤 《计算机科学》2012,39(2):115-117,153
在应用于大规模并行计算机的互连网络的设计中,容错问题是其中的一个关键问题和难点问题。提出了一种基于Torus虫孔交换网络的容错路由算法,这一算法使用了矩形故障模型,无论故障区域大小多少和如何分布,算法始终是无死锁的,而且具有足够的自适应性,只要故障节点没有断开网络的连接,算法就能够通过选路使消息绕过故障区域,保持路由的连通性。同时,算法仅需要使用3个额外的虚拟通道。最后算法在不同故障率的Torus网络中进行了仿真实验,结果显示这一算法具有良好的平滑降级使用的特性。  相似文献   

18.
In wormhole meshes, a reliable routing is supposed to be deadlock-free and fault-tolerant. Many routing algorithms are able to tolerate a large number of faults enclosed by rectangular blocks or special convex, none of them, however, is capable of handling two convex fault regions with distance two by using only two virtual networks. In this paper, a fault-tolerant wormhole routing algorithm is presented to tolerate the disjointed convex faulty regions with distance two or no less, which do not contain any nonfaulty nodes and do not prohibit any routing as long as nodes outside faulty regions are connected in the mesh network. The processors' overlapping along the boundaries of different fault regions is allowed. The proposed algorithm, which routes the messages by X-Y routing algorithm in fault-free region, can tolerate convex fault-connected regions with only two virtual channels per physical channel, and is deadlock- and livelock-free. The proposed algorithm can be easily extended to adaptive routing.  相似文献   

19.
A spate of deadlock avoidance-based and deadlock recovery-based routing algorithms have been proposed in recent years without full understanding of the likelihood and characteristics of actual deadlocks in interconnection networks. This work models the interrelationships between routing freedom, message blocking, correlated resource dependencies, and deadlock formation. It is empirically shown that increasing routing freedom, as achieved by allowing unrestricted routing over multiple physical and virtual channels, reduces the probability of deadlocks and the likelihood of other types of correlated message blocking that can degrade performance. Moreover, when true fully adaptive routing is used in k-ary n-cube networks with two or more virtual channels (wormhole OF virtual cut-through switched), it is empirically shown that deadlocks are virtually eliminated in networks with n⩾2. These results indicate that deadlocks are very infrequent when the network and routing algorithm inherently provide sufficient routing freedom, thus increasing the viability of deadlock recovery routing strategies  相似文献   

20.
Mesh网中高效无死锁自适应路由算法   总被引:2,自引:0,他引:2  
向东  张跃鲤 《计算机学报》2007,30(11):1954-1962
提出了一种新的应用于三维Mesh网中的无死锁路由算法.在当今的商用多计算机系统中,二维和三维的Mesh网是多处理器网络最为常用的拓扑结构之一.在应用于Mesh网的平面自适应路由(Planar Adaptive Routing)算法中,每条物理通道只需三条虚拟通道就可以有效地在三维以及更高维的Mesh网中避免死锁的产生.然而,采用该算法,网络拓扑一维和三维分别有两条和一条虚拟通道始终处于空闲状态.该文所提出的算法针对三维Mesh网,每条物理通道只需两条虚拟通道就可以有效地避免死锁.文中通过充分的模拟数据验证了此算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号