首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two Al2O3/Al composites, grown by the directed oxidation of molten Al alloys at 1400 and 1600 K, were investigated by X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and wet chemical analysis. The materials were found to contain a continuous network of Al2O3, which was predominantly free of grain-boundary phases and was made up of nanometer- to micrometer-sized crystallites, a continuous network of Al alloy, and isolated inclusions of Al alloy. No crystallographic orientation was observed in the metallic phase, whereas the Al2O3 was oriented with its c axis parallel to the growth direction. The higher process temperature yielded a lower metal content and less connectivity of the metallic consituent.  相似文献   

2.
Electrical conductivities of Al2O3/A1 composite synthesized by directed oxidation of an aluminum alloy, and sintered Al2O3–4% MgO are measured. The high conductivity of the Al2O3/A1 composite compared to sintered Al2O3–4% MgO is shown as proof of the presence of continuous metal channels in the composite. Furthermore, the conductivity data are used to determine the activation energy for the diffusion of the dominant charge carrier in the oxide matrix.  相似文献   

3.
Al2O3/AI composites have been formed by the directed oxidation of pure Al doped with MgO powder. Thermal gravimetric analysis was used to characterize reaction kinetics. Optical and scanning electron microscopy and SEM coupled with microanalysis were used to characterize the microstructure of product. Directed oxidation is initiated without an incubation period. The particle size of the MgO powder determines the initial microstructure. Mg is retained in some form at the growth surface after the disappearance of the original MgO; however, there is a continuous loss of Mg from the system. The presence and distribution of the Mg compounds play a key role in the directed oxidation.  相似文献   

4.
Al2O3/Al composites have been formed by the directed oxidation of Al using NaOH as a surface dopant. Oxidation kinetics were monitored by thermogravimetric analysis. Product microstructures were examined using optical microscopy and scanning electron microscopy coupled with microanalysis using energy and wavelength dispersive spectroscopy. NaOH-driven directed oxidation of Al occurs in the temperature range of 850°–1200°C, and the resulting microstructure varies with different doping levels. The growth product is seen to nucleate and grow not only on the top surface of the parent Al but also along the crucible wall and even on the external surface of the crucible. The Al channel size in the product is determined by the initial surface dopant level.  相似文献   

5.
Aluminum nitride (AlN) powders were prepared from the oxide precursors aluminum nitrate, aluminum hydroxide, aluminum 2-ethyl-hexanoate, and aluminum isopropoxide (i.e., Al(NO3)3, Al(OH)3, Al(OH)(O2CCH(C2H5)(C4H9))2, and Al(OCH(CH3)2)3). Pyrolyses were performed in flowing dry NH3 and N2 at 1000°–1500°C. For comparison, the nitride precursors aluminum dimethylamide (Al(N(CH3)2)3) and aluminum trimethylamino alane (AlH3·N(CH3)3) were exposed to the same nitridation conditions. Products were investigated using XRD, TEM, EDX, SEM, and elemental analysis. The results showed that nitridation was primarily controlled by the water:ammonia ratio in the atmosphere. Single-phase AlN powders were obtained from all oxide precursors. Complete nitridation was not obtained using pure N2, even for the non-oxide precursors.  相似文献   

6.
This study focused on clarifying the effect of SiO2 surface dopants on the formation of Al2O3/aluminum composites, especially on oxidation phenomena during the incubation period. The present results showed that a surface dopant decreased the incubation period of an Al-Mg-Si alloy, as well as that of an Al-Mg alloy, and that addition of an external surface dopant decreased the incubation period more effectively than did an internal alloying of silicon. A two-step oxidation process was also conducted. In the first step of the process, an aluminum alloy was oxidized without a surface dopant and cooled to room temperature during the incubation stage. In the second step, the same specimen was surface-doped with SiO2 powder and reoxidized. The incubation time for the specimen subjected to the two-step oxidation process was the same as that for the single-step specimen oxidized with a surface dopant. The substantial decrease in the incubation period, especially for the Al-Mg alloy, is ascribed to interaction between the SiO2 surface dopant and the MgO layer. This interaction made the MgO layer thinner and increased the number of magnesium vacancies in the MgO layer, thus providing an appropriate microstructure in the MgO layer for bulk-growth initiation.  相似文献   

7.
Oxidation Kinetics of Aluminum Nitride   总被引:1,自引:0,他引:1  
Thermal oxidation kinetics of aluminum nitride (AlN) powders, having fine- and coarse-particle-size distributions, were studied using thermogravimetric analysis (TGA). The kinetics showed dependence on the particle-size parameter, and the experimental TGA data were curve fitted using empirical mass relations employing both linear and parabolic models. The simulations predicted mixed kinetics in AlN oxidation.  相似文献   

8.
Hot-isostatically-pressed, additive-free Si3N4 ceramics were implanted with aluminum at multi-energies and multidoses to achieve uniform implant concentrations at 1, 5, and 10 at.% to a depth of about 200 nm. The oxidation behavior of unimplanted and aluminum-implanted Si3N4 samples was investigated in 1 atm flowing oxygen entrained with 100 and 220 ppm NaNO3 vapor at 900–1100°C. Unimplanted Si3N4 exhibits a rapid, linear oxidation rate with an apparent activation energy of about 70 kJ/mol, independent of the sodium content in the gas phase. Oxides formed on the unimplanted samples are rough and are populated with cracks and pores. In contrast, aluminum-implanted Si3N4 shows a significantly reduced, parabolic oxidation rate with apparent activation energies in the range of 90–140 kJ/mol, depending on the sodium content as well as the implant concentration. The oxides formed on the implanted samples are glassy and mostly free from surface flaws. The alteration of the oxidation kinetics and mechanism of Si3N4 in a sodium-containing environment by aluminum implantation is a consequence of the effective modification of the properties of the sodium silicates through aluminum incorporation.  相似文献   

9.
The composition and microstructure of dispersed-phase ceramic composites containing BN and AIN as well as BN and AIN single-phase ceramics prepared by chemical vapor deposition have been characterized using X-ray diffraction, scanning electron microscopy, electron microprobe, and transmission electron microscopy techniques. Under certain processing conditions, the codeposited coating microstructure consists of small single-crystal AIN fibers (whiskers) surrounded by a turbostratic BN matrix. Other processing conditions resulted in single-phase films of AIN with a fibrous structure. The compositions of the codeposits range from 2 to 50 mol% BN, 50 to 80 mol% AIN with 7% to 25% oxygen impurity as determined by electron microprobe analysis.  相似文献   

10.
The oxidation kinetics, morphology, and crystallinity of aluminum nitride (AlN) powder thermally oxidized in flowing oxygen were determined from 800° to 1150°C. At 800°C the oxidation became detectable with weight change. AlN powder was almost completely oxidized at 1050°C after only 0.5 h. Amorphous aluminum oxide formed at relatively low temperatures (800°–1000°C), with a linear oxidation rate governed by the oxygen–nitride interfacial reaction. Transmission electron microscopy displayed individual aluminum oxide grains which formed a discontinuous oxide layer at this temperature range. The aluminum oxide was crystalline at higher temperatures (>1000°C), as detected by X-ray diffraction, and the density of oxide grains increased with temperature.  相似文献   

11.
氮化铝复合材料的氧化   总被引:1,自引:0,他引:1  
制订出在广泛的温度范围(1073~1273K)及时间范围内研究氮化铝质陶瓷复合材料在空气中的耐热性能的方法,并且试样重量变化的绝对误差不大于0.15~0.17mg。采用重力测量法研究了氮化铝质复合材料与磷酸盐结合剂之间的相互作用,并与热压试样进行了比较。提出了结合剂性能对氧化过程动力学的影响机理。氧化过程的活化能值较低(152~205KJ·mol-1),因此可以推断材料氧化过程的速度将取决于铝离子通过α-Al2O3膜时的扩散状况。  相似文献   

12.
Europium oxide has been investigated as a sintering aid and dopant for AIN. Pressureless sintering was carried out with 0 to 9 wt% Eu2O3 additives, and dense sintered specimens were obtained using 1 to 4 wt% Eu2O3. With increasing Eu2O3 content, two additional phases were observed in the X-ray diffraction patterns. The lattice parameters a and c of AIN in the wurtzite structure changed slightly and non-monotonically with Eu2O3 content and showed their minimum value in a 4 wt% Eu2O3 sample. The Raman and photoluminescence spectra of sintered specimens were measured. These experimental results and the sintering mechanism in the system were discussed from the standpoint of the effects of oxygen, europium, and stress.  相似文献   

13.
Based on a biomimetic design, Si3N4/BN composites with laminated structures have been prepared and investigated through composition control and structure design. To further improve the mechanical properties of the composites, Si3N4 matrix layers were reinforced by SiC whiskers and BN separating layers were modified by adding Si3N4 or Al2O3. The results showed that the addition of SiC whiskers in the Si3N4 matrix layers could greatly improve the apparent fracture toughness (reaching 28.1 MPa·m1/2), at the same time keeping the higher bending strength (reaching 651.5 MPa) of the composites. Additions of 50 wt% Al2O3 or 10 wt% Si3N4 to BN interfacial layers had a beneficial effect on the strength and toughness of the laminated Si3N4/BN composites. Through observation of microstructure by SEM, multilevel toughening mechanisms contributing to high toughness of the laminated Si3N4/BN composites were present as the first-level toughening mechanisms from BN interfacial layers as crack deflection, bifurcation, and pull-out of matrix sheets, and the secondary toughening mechanism from whiskers in matrix layers.  相似文献   

14.
Alumina/metal composites were grown into the pores of porous alumina, porous aluminosilicate, and porous silicon carbide substrates through the oxidation of Al–Si (5 wt%) powder compacts coated with magnesia powder (11 mg/ cm2). The thickness of the resulting composite increased with oxidation time and temperature, and was proportional to (pore size)0.5 on using porous alumina. The composite thickness was more than 2 times larger in the silicon carbide and about 4 times larger in the aluminosilicate than in the alumina at 1523 K for 1 h. The products using these three types of substrates consisted of alumina, aluminum, and silicon, except that a silicon carbide phase occurred when using the silicon carbide substrate. Silica and mullite in the aluminosilicate substrate changed to silicon and alumina, and silica in the silicon carbide substrate changed to silicon because of the reduction by aluminum.  相似文献   

15.
Oxidation of Sintered Aluminum Nitride at Near-Ambient Temperatures   总被引:1,自引:0,他引:1  
Oxidation of sintered aluminum nitride at low temperatures (20°–200°C) was studied using transmission electron microscopy (TEM). Particles of α-Al2O3, about 20–30 Å in size, were found to form within minutes on freshly cleaned surfaces of AlN at room temperature. The oxide was found to grow nearly epitaxially on AlN when the {0001}AlN planes were exposed to the surface. Limited nonepitaxial oxidation was also observed when the basal planes were inclined to the TEM foil surface. After 10 h in air at 75°C, the particles coarsened to about 50 Å, while after 150 h at 200°C, an oxide film, about 500 Å thick, was observed on some grains.  相似文献   

16.
A method for studying the heat resistance of composite aluminum nitride-based ceramic materials in air at 1073 – 1273 K is developed that allows the change in mass to be measured with an accuracy of 0.15 – 0.17 mg. The interaction between AlN-based composite materials and a phosphate binder (H3PO4) is studied and compared with hot-pressed specimens. A mechanism for the effect of the binder on the kinetics of oxidation is proposed. The relatively low activation energies (152 and 205 kJ/mole) suggest that the oxidation process is mainly determined by the diffusion of aluminum ions through the -Al2O3 film.  相似文献   

17.
Heat-Resistant Silicon Carbide with Aluminum Nitride and Erbium Oxide   总被引:2,自引:0,他引:2  
Fully dense SiC ceramics with high strength at high temperature were obtained by hot-pressing and subsequent annealing under pressure, with AlN and Er2O3 as sintering additives. The ceramics had a self-reinforced microstructure consisting of elongated SiC grains and a grain-boundary glassy phase. The strength of these ceramics was ∼550 MPa at 1600°C, and the fracture toughness was ∼6 MPa·m1/2 at room temperature. The beneficial effect of the new additive composition on high-temperature strength might be attributable to the introduction of aluminum from the liquid composition into the SiC lattice, resulting in a refractive grain-boundary glassy phase.  相似文献   

18.
Billets of hexagonal boron nitride powders ( h -BN) were hot-pressed, varying the alignment of the platelike particles and the amount of oxide additives. Increasing either alignment of individual grains or the amount of additives was shown to increase flexural strength, to approximately 120 MPa at ambient temperatures. h -BN was shown to deflect cracks initially propagating normal to its basal planes.  相似文献   

19.
Synthesis, Properties, and Oxidation of Alumina-Titanium Nitride Composites   总被引:3,自引:0,他引:3  
Al2O3-TiN composites varying from 60 to 66.6 mol% TiN were prepared by an in situ reaction between TiO2 and AlN. N2 or O2 evolution takes place, depending on the composition selected. A pseudobrookite (PB) phase appears in the reaction product, the amount decreasing as the TiO2:AlN ratio becomes poor in AlN. The in situ reaction product can be pressureless sintered to 94% to 97% theoretical density at 1600°C in N2. The four-point flexural strength varies from 280 to 430 MPa at room temperature. The fracture toughness is 3 to 4.7 MPa.m1/2. Oxidation of a 94% dense TiN-Al2O3 composite in the temperature range 710° to 1050°C was also studied. A layer of TiO2 (rutile) protects the composite at 710°C from further oxidation with a weight gain of 0.08 mg/cm2 in 90 min. In the temperature range 820° to 1050°C, the initial oxidation kinetics are parabolic, with an activation energy of 216.5 kJ/mol. Linear oxidation kinetics with an activation energy of 113.7 kJ/mol pertain at longer times.  相似文献   

20.
The oxidation of BN composite interphases was examined with a series of model materials. Oxidation was examined in both low-water-vapor (∼20 ppm H2O/O2) environments at 900°C and high-water-vapor (1% and 10% H2O/O2) environments at 700° and 800°C. The low-water-vapor case was explored with layered BN/SiC materials. This case was dominated by borosilicate glass formation, and the 20 ppm water vapor gradually removed the boron from the glass, leaving a larger amount of SiO2 than would be expected from simple SiC oxidation. Layered SiC/BN/SiC materials were also used to study low-water-vapor oxidation effects within the composite. The high-water-vapor case was explored with SiC/BN/SiC minicomposites, and it was dominated by volatilization of BN as HBO2( g ), H3BO3( g ), and H3B3O6( g ). A model for recession of the BN fiber coating was developed based on the gas-phase diffusion of these species out of the annular region around the SiC fiber and concurrent sealing of this annular region by oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号