首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用反应性羧基丁腈橡胶(CTBN)对环氧树脂E-51(EP)进行了增韧改性,并制备了CTBN/EP复合材料,研究了不同用量CTBN增韧改性环氧树脂复合材料的性能。结果表明,采用15份CTBN对EP进行增韧改性,并以2-乙基-4-甲基咪唑作固化剂在100℃下制备的CTBN/EP复合材料综合性能满足要求。  相似文献   

2.
双酚A及端羧基丁腈橡胶对环氧树脂的增韧作用   总被引:7,自引:0,他引:7  
以2-乙基-4-甲基咪唑为固化剂,分别以端羧基丁腈橡胶(CTBN)、CTBN/双酚A(BPA)或BPA为增韧剂增韧环氧树脂,研究了环氧树脂增韧体系的微观形貌和力学性能,考察了不同混料方式对CTBN增韧环氧树脂性能的影响。结果表明:CTBN增韧环氧树脂能使其固化物的冲击韧性有所提高,但其他力学性能降低;采用环氧树脂先与其进行预聚反应再经固化剂固化的方法能提高CTBN对环氧树脂的增韧效果;用CTBN/BPA为增韧剂不仅可以大幅度提高材料的冲击强度和扯断伸长率,而且可以提高弯曲强度与模量,克服了CTBN单一增韧导致材料强度下降的不足。BPA的加入可使环氧树脂固化物体系的弯曲强度、冲击强度和扯断伸长率有较大幅度的提高。  相似文献   

3.
在双酚F树脂中分别加入不同质量的711和TDE-85环氧树脂制备了6种环氧树脂体系,并采用聚醚胺和脂环胺复合固化剂固化,对各体系的粘度、固化行为、耐热性及力学性能进行了测试。结果表明,711环氧树脂具有比TDE-85更高的反应活性。在80 g双酚F树脂中加入20 g TDE-85环氧制备的体系具有最佳的综合性能,30℃下的适用期(粘度500 mPa·s)为120 min,玻璃化转变温度102℃,常温下固化物拉伸强度为78.6 MPa,有望用于多种复合材料的RTM成型。  相似文献   

4.
以CTBN(羧基液体丁腈橡胶)为增韧剂,双氰胺为固化剂制备了一种高温固化车用环氧树脂胶粘剂。重点研究了其固化工艺、力学性能和CTBN的增韧效果。  相似文献   

5.
采用端羧基液体丁腈橡胶(CTBN)对环氧树脂增韧改性,通过扫描电子显微镜观察了环氧树脂/CTBN复合材料的相态形貌,分析了增韧机理,测试了复合材料的力学性能。CTBN对环氧树脂的增韧机理是剪切变形与"钉扎"机制共同作用的结果;当CTBN添加量为15phr时,环氧树脂/CTBN的综合性能最佳,剪切强度、拉伸强度、悬臂梁缺口冲击强度分别为16.8MPa,28.4MPa,17.53kJ/m2;CTBN可与环氧树脂反应并嵌入其中,与环氧树脂随着固化反应的进行形成两相结构。  相似文献   

6.
CTBN增韧环氧树脂胶粘剂工艺条件的研究   总被引:1,自引:0,他引:1  
蒋敏  姚远 《粘接》2008,29(10)
为改善环氧固化物的韧性,采用液态端羧基丁腈橡胶(CTBN)增韧环氧树脂制成含CTBN嵌段的环氧树脂预聚物,再加入其他助剂及固化剂制备环氧胶。实验表明,CTBN增韧E-51的最佳反应条件为:温度(125±1)℃、催化剂三苯基瞵(TPP)0.2%、反应时间80 min。在此条件下,CTBN用量每增加5%,反应时间延长约20min。  相似文献   

7.
用羧基液体丁腈橡胶(CTBN)对环氧树脂(EP)进行改性,先生成EP/CTBN预聚物,再以651聚酰胺树脂及一定量的聚醚胺作为内增韧型固化剂固化成型.采用红外光谱对预聚物进行结构表征,测试了不同CTBN含量改性EP固化后的冲击强度、拉伸剪切强度、玻璃化转变温度、外观、断裂形貌.结果表明,EP中的环氧基与CTBN中的羧基...  相似文献   

8.
采用端羧基液体丁腈橡胶(CTBN)增韧环氧树脂,制备了双组分室温固化环氧结构胶。利用傅里叶变换红外光谱仪(FTIR)、微机控制万能材料试验机及扫描电镜(SEM)对固化过程、固化产物剪切强度及固化产物微观形态进行了表征。该胶树脂甲组分的最佳制备条件如下:环氧树脂与CTBN的质量比8∶1,反应温度200℃,保温时间2.5 h。该胶在室温下固化24 h,室温剪切强度可达29.24 MPa,耐介质性能良好,CTBN改性环氧树脂增韧效果显著。  相似文献   

9.
本文介绍了液体端羧基丁腈橡胶CTBN增韧环氧树脂作为结构材料使用时,CTBN的丙烯腈(AN)含量和CTBN用量对增韧效果影响的系统研究。以六氢吡啶为固化剂的环氧树脂增韧体系,CTBN的AN含量最佳范围为23~30%,CTBN的最佳用量为10phr(每百份树脂的重量份数)。本文还讨论了CTBN分子量对增韧效果的影响以及影响相分离的各种因素。  相似文献   

10.
以多元醇(PPG-2000或PTMG-2000)、甲苯二异氰酸酯(TDI)为主要原料,合成了PU(聚氨酯)预聚体;然后加入E-44型EP(环氧树脂)和缩水甘油醚(Glycidyl)对PU预聚体进行封端,制成E/G-PU(端环氧基PU);再加入TDE-85型EP和活性稀释剂,制备出环保无溶剂型E/G-PU/TDE-85/活性稀释剂胶粘剂;最后采用间苯二甲胺(m-XDA)固化剂和2,4,6-三(二甲胺基甲基)苯酚(DMP-30).促进剂对该EP胶粘剂进行固化,明显提升了体系的固化速率。结果表明:当w(活性稀释剂D-085)=5%时,E/G-PU(PTMG-2000)/TDE-85/D-085胶粘剂的剪切强度(24.63 MPa)相对最大。  相似文献   

11.
在环氧树脂(EP)与端羧基丁腈橡胶(CTBN)的混合体系中,起始固化温度不同的异佛尔酮二胺(IPDA)和4,4'-二氨基二苯砜(DDS)以一定比例组成复合固化剂,能明显提高CTBN在EP基体中的粒径,从而改善增韧效果。结果表明:采用IPDA,DDS单独固化且与m(IPDA)∶m(DDS)=12∶16复合固化对比,发现复合固化EP/CTBN混合体系时,CTBN的相分离更充分,且相区尺寸达到864 nm,远大于IPDA固化的200 nm和DDS固化的650 nm,冲击强度比IPDA和DDS固化分别提高33%,78%。  相似文献   

12.
为了探究环氧树脂(EP)对双马来酰亚胺树脂(BMI)的增强增韧效果,分别采用4种EP:AFG-90、TDE-85、E-14、D-17,用以改性BMI树脂基体,并同碳纤维方格布(CF)制成了CF/BMI-EP复合材料(CM)。采用差示扫描量热分析(DSC)测试了BMI和4组EP改性BMI的固化曲线和树脂固化后的玻璃化转变温度(Tg);采用傅立叶转换红外光谱仪(FTIR)测试了树脂体系固化后的红外吸收光谱;采用万能力学试验机测试了各组CM的弯曲性能和冲击韧性,观察记录了试样破坏的断裂形貌;采用扫描电镜(SEM)对CM试样的层间断面进行了形貌分析。研究发现,EP和BMI先后进行相对独立的固化,混合树脂相容性良好。实验发现,TDE-85的增强效果最佳,D-17的增韧效果最佳,并满足增强增韧规律。AFG-90、TDE-85、D-17改性BMI的Tg都在200℃以上,表明EP在改性BMI的同时并未牺牲耐热性。  相似文献   

13.
在环氧树脂(EP)与端羧基丁腈橡胶(CTBN)的混合体系中,起始固化温度不同的异佛尔酮二胺(IPDA)和4,4'-二氨基二苯砜(DDS)以一定比例组成复合固化剂,能明显提高CTBN在EP基体中的粒径,从而改善增韧效果。结果表明:采用IPDA,DDS单独固化且与m(IPDA)∶m(DDS)=12∶16复合固化对比,发现复合固化EP/CTBN混合体系时,CTBN的相分离更充分,且相区尺寸达到864 nm,远大于IPDA固化的200 nm和DDS固化的650 nm,冲击强度比IPDA和DDS固化分别提高33%,78%。  相似文献   

14.
采用双增韧剂(端羧基液体丁腈橡胶(CTBN)与纳米SiO2(n-SiO2))对环氧树脂(ER)增韧,并用正交试验方法对其增韧条件进行了优化。通过对固化产物力学性能、热稳定性及微观形态的测定及表征,结果表明:优化的胶黏剂制备条件是双增韧剂(CTBN+n-SiO2)占ER的1/8、CTBN与n-SiO2的比例为2∶1、反应温度为180℃、反应时间为2.5 h,胶黏剂冲击强度达到18.24 kJ/m2;红外表明(FTIR)双增韧剂均与ER发生作用,热重分析(TG)结果显示固化产物热稳定性良好,扫描电镜(SEM)对固化产物微观形态的观察结果显示双增韧剂对ER增韧作用明显。  相似文献   

15.
以液态CTBN(端羧基丁腈橡胶)增韧EP(环氧树脂)为基本组分,采用正交试验法探讨了CTBN、混合固化剂[DETDA(二乙基甲苯二胺)、D400(柔性聚醚胺)]、固化温度和固化时间对EP胶粘剂冲击强度、拉伸剪切强度和对接接头拉伸强度的影响。研究结果表明:CTBN和D400对3种强度有增强效果;当w(CTBN)=10%、w(DETDA)=25%、w(D400)=30%(均相对于EP质量而言)、预固化温度60℃、预固化时间2 h、固化温度160℃和固化时间4 h时,EP胶粘剂的拉伸剪切强度(为43.3 MPa)、拉伸强度(为34.2 MPa)和冲击强度(为16.4 k J/m2)比未加改性剂体系分别提高了34.4%、85.9%和97.6%。  相似文献   

16.
用液体端羧基丁腈橡胶(CTBN)对氰酸酯树脂(CE)进行了增韧改性,通过树脂体系的凝胶时间曲线和DSC曲线确定了体系的固化工艺,并制备了玻璃纤维(GF)增强复合材料。CTBN改性后的CE树脂及复合材料具有良好的力学性能,其中固化树脂的弯曲强度和冲击强度分别提高了34.6%和48%,复合材料的弯曲强度和冲击强度分别提高了11.4%和21.3%,这来源于CTBN对氰酸酯树脂的增韧作用及与GF良好的粘接性能。  相似文献   

17.
通过示差扫描量热仪、力学性能测试及电镜分析等研究了端羧基丁腈橡胶(CTBN)和核壳橡胶(CSR)增韧改性环氧树脂(EP)体系的结构与增韧改性效果,结果表明:CTBN和CSR都能显著提高环氧树脂的冲击强度,CSR增韧环氧体系的拉伸强度及弯曲强度增幅较大。CTBN的加入使环氧树脂的玻璃化温度大幅下降,EP/CSR体系的Tg也有所降低,但随CSR含量的增加又有回升的趋势。CTBN的加入对环氧体系的固化起到了抑制作用,体系的凝胶化时间明显变长;而CSR的加入对环氧体系的固化影响不大。比较而言,CSR增韧环氧体系的综合性能更佳。  相似文献   

18.
采用2,4,6-三(二甲氨基甲基)苯酚为促进剂,甲基四氢邻苯二甲酸酐为固化剂,以端羧基液体丁腈橡胶(CTBN)增韧改性酚醛环氧树脂。利用傅里叶红外光谱,动态热力学分析仪、静态热力学分析仪及力学性能测试研究了CTBN用量对复合材料性能的影响。结果表明,CTBN质量分数15%时,复合材料的力学性能最佳,冲击强度、拉伸强度、断裂伸长率分别为11.722 k J/m2、24.022 MPa、10.099%,较纯环氧树脂分别提高了32.53%、147.45%、99.86%,此时储能模量降低最为明显。而材料的玻璃化转变温度降低,热膨胀系数呈现出先降低后升高的趋势。  相似文献   

19.
以液体端羧基丁腈橡胶(CTBN)作为环氧树脂(EP)的增韧改性剂,制备了CTBN/EP预聚体和共混物。采用红外光谱(FT-IR)法对两者的结构进行了表征,并着重探讨了CTBN含量对预聚体和共混物力学性能的影响。研究结果表明:预聚体中EP的环氧基开环,并与CTBN反应,生成了酯键;随着CTBN含量的不断增加,CTBN/EP预聚体和共混物的杨氏模量、拉伸强度降低,冲击强度和断裂伸长率呈先升后降态势,说明适量CTBN的引入对EP具有良好的增韧效果;当固化温度较低时,CTBN/EP预聚体的冲击强度明显优于CTBN/EP共混物,而固化温度较高时两者的冲击强度无明显差异。  相似文献   

20.
以低结构CB(炭黑)为导电填料、EP(环氧树脂)为基体、CTBN(端羧基液体丁腈橡胶)为改性剂和2,4-EMI(2-乙基-4-甲基咪唑)为固化剂,采用超声分散法制备CB/EP基导电复合材料.研究结果表明:CB/EP基导电复合材料具有明显的导电渗流行为,其渗流阈值为w(CB)=7.1%;当w(CTBN)=12%时,含CT...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号