首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
通过静态吸附解吸实验以及动态吸附解吸实验,优化了AB-8大孔树脂纯化柑橘皮黄酮的工艺。结果表明,AB-8大孔树脂的静态吸附:饱和吸附量15 mg/g(以树脂湿重计),饱和吸附时间180 min,样液最佳p H 5. 5,样液中黄酮浓度高有利于吸附; AB-8大孔树脂的静态解吸液乙醇最佳浓度为80%,黄酮解吸速度很快,少量解吸液可较好地洗脱而得到高浓度黄酮溶液;动态吸附流速3 BV/h,解吸流速6 BV/h,纯化柑橘黄酮的回收率为75. 07%,纯化倍数为4. 14;柑橘皮黄酮主要以糖苷形式存在,苷元较少。  相似文献   

2.
通过静态吸附解吸实验以及动态吸附解吸实验,优化了AB-8大孔树脂纯化柑橘皮黄酮的工艺。结果表明,AB-8大孔树脂的静态吸附:饱和吸附量15 mg/g(以树脂湿重计),饱和吸附时间180 min,样液最佳p H 5. 5,样液中黄酮浓度高有利于吸附; AB-8大孔树脂的静态解吸液乙醇最佳浓度为80%,黄酮解吸速度很快,少量解吸液可较好地洗脱而得到高浓度黄酮溶液;动态吸附流速3 BV/h,解吸流速6 BV/h,纯化柑橘黄酮的回收率为75. 07%,纯化倍数为4. 14;柑橘皮黄酮主要以糖苷形式存在,苷元较少。  相似文献   

3.
分别研究了X-5和AB-8两种不同树脂对桃金娘叶总黄酮的静态吸附和解吸性能。结果表明,X-5树脂具有较好的吸附和解吸参数,是一种分离纯化桃金娘叶总黄酮较好的树脂,其最佳条件为温度为25℃、吸附时间为6 h、黄酮原液pH=6时,吸附率最大,为66.07%,此时选用95%的乙醇做解吸剂,于30℃温度下解吸12 h时,解吸效果最佳。  相似文献   

4.
葛根中黄酮的提取与纯化研究   总被引:2,自引:0,他引:2  
《应用化工》2015,(9):1691-1693
以葛根粉为原料,采用乙醇提取法,研究葛根中黄酮的提取及纯化工艺。采用紫外分光光度法测定黄酮标准曲线用于计算葛根中黄酮含量。在乙醇提取法提取葛根黄酮的研究中,以提取时间、料液比、乙醇体积分率、温度为考察因素,进行单因素条件研究。结果表明,最佳提取时间为1.5 h,料液比为1∶13 g/m L,乙醇体积分率为40%,温度为60℃,葛根黄酮的提取率达到2.64 mg/g。以LS-303型大孔吸附树脂为吸附剂,以葛根黄酮在该树脂上的最佳动态吸附与解吸条件为操作参数,采用树脂柱进行葛根提取液中黄酮的分离纯化,采用紫外分光光度法检验纯化效果,研究发现LS-303型树脂对葛根黄酮有良好的纯化作用。  相似文献   

5.
依据东北岩高兰总黄酮的吸附和解吸能力,采用静态吸附和解吸实验对8种型号的大孔吸附树脂进行筛选。结果显示,AB-8型大孔吸附树脂对东北岩高兰总黄酮具有较好的吸附和解吸性能。经HPLC分析提取出的东北岩高兰主要有5种成分。进一步探究了总黄酮的纯化工艺,得到5种成分的最佳静态吸附解吸条件为:吸附平衡时间1.0 h,解吸溶剂为体积分数95%的乙醇,解吸平衡时间1.5 h。不同温度(25、30、35℃)下,AB-8型大孔吸附树脂对东北岩高兰不同成分的吸附等温线均符合Freundlich模型和Langmuir模型。5种成分的最佳动态吸附洗脱工艺条件为:上样液质量浓度为5 g/L,最大上样量400 mL,5倍柱体积(BV)的体积分数为20%的乙醇洗脱杂质,5倍BV的体积分数为95%的乙醇洗脱成分,洗脱流速3m L/min。在最佳实验条件下,东北岩高兰总黄酮的质量分数由纯化前的49.16%提高到纯化后的89.59%,表明AB-8型大孔吸附树脂能够有效纯化东北岩高兰。  相似文献   

6.
树脂法富集分离蜂胶总黄酮   总被引:1,自引:0,他引:1  
郑洁  连会  彭奇均 《化工进展》2007,26(8):1148-1150,1154
实验考察了7种大孔树脂及聚酰胺对蜂胶总黄酮的吸附率和解吸率,结果显示,AB-8树脂对蜂胶总黄酮有较高的吸附解吸能力,适合富集蜂胶总黄酮。实验还对影响AB-8树脂富集蜂胶总黄酮的各因素(吸附时间、吸附温度、解吸温度、洗脱剂乙醇浓度、洗脱剂用量)进行了研究,所得AB-8树脂对蜂胶总黄酮的富集工艺为:35℃水浴静态吸附5 h,75%乙醇7BV洗脱,总黄酮解吸率可达90%,所得蜂胶浸膏总黄酮含量达30%。  相似文献   

7.
刘玲玲  孙彤彤  陈小强  张莹 《精细化工》2021,38(2):341-349,357
以林生茜草果实为原料,比较了6种大孔树脂对其花青素的吸附及解吸性能,确定林生茜草果实花青素的纯化工艺条件,并对纯化后的花青素进行了稳定性研究.结果表明,LX-8树脂为最佳纯化树脂,吸附平衡时间3 h;最佳工艺条件为:吸附及解吸液pH 2.0,解吸液乙醇体积分数70%,吸附与解吸流速均为0.5 mL/min,洗脱液用量6...  相似文献   

8.
邵京  李百健 《化学世界》2013,54(8):460-463,466
采用紫外分光光度法测定银杏叶中总黄酮的含量;通过单因素试验考察提取溶剂、料液比、浸提时间、浸提温度对银杏黄酮得率的影响,并用正交试验确定了银杏黄酮提取的最佳工艺;通过不同型号吸附树脂对银杏黄酮吸附效果的比较,确定了吸附树脂的型号,并考察了不同洗脱液的洗脱效果,筛选出最佳洗脱液。试验得到最佳制备工艺为:以50%乙醇为提取剂,料液比为1∶20,浸提时间为6.0h,浸提温度为90℃;以D101型大孔树脂对提取液进行吸附纯化,用30%乙醇进行洗脱分离。利用此工艺制备的银杏叶提取物中黄酮含量达35%,银杏酸含量低于5×10-6。  相似文献   

9.
苏娇娇  黄莉清  李春谕  周晓秋  何珺 《应用化工》2023,(10):2972-2975+2980
采用静态吸附实验考察了聚酰胺树脂及D101、HPD-826、HPD-417、LK-17、BS-75、ADS-17等大孔树脂对杜仲叶黄酮的纯化效果,采用动态吸附实验考察了上样量、上样液速度、洗脱剂浓度、洗脱剂用量、洗脱剂流速对聚酰胺树脂与HPD-826大孔树脂的动态吸附与解吸率的影响。结果表明,一次柱层析采用HPD-826大孔树脂,上样流速为1 BV/h,洗脱剂为60%乙醇,洗脱剂用量为3 BV,洗脱剂流速为1.5 BV/h,最佳上样量为22.14 mg/g;二次柱层析选用聚酰胺树脂,上样流速为1 BV/h,洗脱剂为60%乙醇,洗脱剂用量为柱体积的3倍,洗脱剂流速为1.5 BV/h,最佳上样量为15.81 mg/g;双柱法分离纯化的杜仲叶提取物总黄酮纯度为65.19%。  相似文献   

10.
以X-5大孔吸附树脂对黑柴胡黄酮粗提液进行分离纯化,测定了黑柴胡黄酮体外抗氧化活性。以静态吸附率和解吸率为指标,确定X-5大孔吸附树脂分离纯化黑柴胡黄酮的最佳工艺为:粗提液中黄酮上样浓度为0.369mg·mL-1、pH值1~2,静态吸附时间7h,45%乙醇或65%乙醇作为解吸剂。纯化后的黑柴胡黄酮具有更好的抗氧化性,其对·DPPH、ABTS+的清除能力及还原力均高于黑柴胡黄酮粗提液。表明X-5大孔吸附树脂是分离纯化黑柴胡黄酮的优良树脂。  相似文献   

11.
考察了HZ16c型大孔吸附树脂对3-甲基黄嘌呤粗粉的纯化工艺。利用吸附及解吸的单因素影响试验,筛选树脂的最佳工艺条件。最佳纯化工艺条件为:HZ16c型大孔吸附树脂静态吸附量为22.5 mg/g;上样液3-甲基黄嘌呤p H为9.5~10.0;解吸溶剂为60%乙醇溶液(p H 10.0),控制解吸速度为2.0 m L/min,解吸体积约为3倍树脂体积(3BV)。该3-甲基黄嘌呤的纯化工艺路线收率达到75%。大孔吸附树脂HZ16c能有效纯化3-甲基黄嘌呤,该工艺简捷,有一定工业化应用价值。  相似文献   

12.
《云南化工》2015,(3):1-5
研究了八角莲中黄酮类化合物的分离纯化工艺。考察各种因素对树脂吸附和洗脱效果的影响,确定了AB-8型大孔树脂分离纯化八角莲中黄酮类化合物的最佳工艺参数。最佳工艺参数为:静态吸附,树脂与样液比为1:20 g/m L、吸附时间为3 h,静态解吸过程解吸液(乙醇)体积分数为70%、树脂与解吸液的比例为1∶50 g/m L;动态吸附中动态流速为0.5 m L/min、静置时间为80 min,动态解吸中洗脱液(乙醇)的体积分数为60%、树脂与洗脱液的比例为1∶40 g/m L。  相似文献   

13.
采用大孔树脂混合使用技术,用于分离纯化竹叶黄酮的工艺研究。通过研究8种大孔树脂对竹叶黄酮的静态吸附与解吸实验,筛选出两种较好的树脂D101-1和AB-8,采用混用技术进行实验,结果表明:D101-1与AB-8的最优混合比例为2:1;上样液质量浓度1.2 mg/m L、上样量为3.5 BV、上样流速2 BV/h为最佳上样条件,洗脱剂体积分数70%、洗脱体积4BV、洗脱流速2 BV/h的条件下进行洗脱。在此条件下进行纯化实验,分离纯化效果最好,样品中黄酮纯度由原来的8.46%上升至28.16%。  相似文献   

14.
研究通过静态吸附/解吸实验对大孔吸附树脂进行筛选,优选AB-8大孔吸附树脂作为层析柱填料,并对其进行喜树碱纯化工艺研究;研究表明AB-8树脂对喜树碱的静态吸附率为95.31%;体积分数95%的乙醇静态解吸率为92.4%;最佳吸附条件为:上样液质量浓度为0.175mg/mL,上样液不调pH值,吸附流速为2BV/h,平衡吸附5h;最佳洗脱条件:体积分数95%乙醇,洗脱流速1BV/h,洗脱体积为8BV。在该工艺条件下,洗脱物中喜树碱质量分数为7.43%,洗脱率为83.1%。  相似文献   

15.
陈杰  何日柳  代晴  崔鹏 《应用化工》2010,39(8):1115-1117,1122
研究了大孔树脂吸附分离酶解法苦楝素提取液的工艺条件及参数,LS-100型大孔吸附树脂明显优于AB-8型和NAK-Ⅱ型,其吸附分离苦楝素的吸附优化条件为:溶液pH值7.0,吸附温度45℃,平衡吸附时间4 h;解吸优化条件为:解吸剂为80%乙醇-水溶液,pH值5.0,解吸操作温度35℃,时间2.5 h。在此优化条件下,苦楝素的饱和吸附量可达201.6 mg/g,解吸率达88.9%。  相似文献   

16.
为了研究大孔树脂静态吸附和解吸纯化苦菜多酚的工艺条件,以吸附量和解吸量为指标,从六种大孔树脂中选出最佳树脂,并研究大孔树脂静态吸附及解吸纯化的工艺条件。结果表明:NKA-Ⅱ型大孔树脂为盐碱地苦菜多酚纯化的最佳树脂。纯化的最佳条件为:吸附样液浓度2mg/mL,吸附pH为1左右,解吸液为体积分数60%的乙醇,解吸pH约为4左右。  相似文献   

17.
通过静态吸附及解吸实验,考察5种大孔吸附树脂对杏仁皮单宁的吸附及解吸性能,确定效果最佳的大孔吸附树脂。考察上样浓度、上样流速、上样量对吸附性能的影响,乙醇浓度、洗脱流速、洗脱液用量对解吸性能的影响。结果表明,最佳纯化条件为:采用HP-20型大孔吸附树脂,上样液浓度为1.20 mg/mL,上样流速为1 BV/h,上样量为4 BV,洗脱液为70%乙醇溶液,洗脱液用量为3 BV,洗脱流速为1.5 BV/h。在此条件下,杏仁皮单宁纯度由9.97%提高到32.58%。表明HP-20型大孔吸附树脂纯化杏仁皮单宁工艺可靠、效果良好。  相似文献   

18.
大孔吸附树脂法纯化山楂黄酮的工艺研究   总被引:3,自引:0,他引:3  
对5种大孔吸附树脂纯化山楂黄酮的效果进行了比较.结果表明,X-5吸附树脂的纯化效果最好.通过对纯化影响因素的研究,确定了以X-5树脂纯化山楂黄酮最优的工艺条件为:山楂黄酮水溶液的浓度为2.0 mg·mL-1,pH为3,上柱流速为3 BV·h-1,用3 BV体积分数为70%的乙醇解吸.采用X-5吸附树脂纯化后,最终产品纯度为93.25%,满足了作为药品原料药的纯度要求.  相似文献   

19.
通过静态吸附及解吸实验,考察5种大孔吸附树脂对杏仁皮单宁的吸附及解吸性能,确定效果最佳的大孔吸附树脂。考察上样浓度、上样流速、上样量对吸附性能的影响,乙醇浓度、洗脱流速、洗脱液用量对解吸性能的影响。结果表明,最佳纯化条件为:采用HP-20型大孔吸附树脂,上样液浓度为1.20 mg/mL,上样流速为1 BV/h,上样量为4 BV,洗脱液为70%乙醇溶液,洗脱液用量为3 BV,洗脱流速为1.5 BV/h。在此条件下,杏仁皮单宁纯度由9.97%提高到32.58%。表明HP-20型大孔吸附树脂纯化杏仁皮单宁工艺可靠、效果良好。  相似文献   

20.
大孔吸附树脂纯化化香树果序总黄酮工艺研究   总被引:5,自引:2,他引:3  
以吸附量和解吸率为指标对9种大孔吸附树脂进行对比,H-327B是分离纯化化香树总黄酮的理想树脂;热力学、动力学研究表明,Langmuir模型描述化香树果序黄酮在大孔树脂上的吸附规律更为适宜,该吸附属单分子层吸附,提高温度有利于吸附的进行,吸附过程可自发进行;对吸附?解吸工艺条件优化研究表明:当上样质量浓度为8.9 mg/mL、流速为3 BV/h时,H-327B型树脂对化香树果序总黄酮的吸附量较大。采用体积分数90%乙醇水溶液进行洗脱时,用5 BV乙醇洗脱,解吸率达到65%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号