首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
黄晓巍 《硅酸盐学报》2006,34(4):479-482
以CaO-MgO-SiO2玻璃为烧结助剂,用液相烧结法制备了氧化铝和3%氧化钇稳定四方氧化锆复相材料.研究了烧结助剂对材料致密化、显微结构及力学性能的影响.结果表明:由于CaO-MgO-SiO2玻璃具有较小的液相粘度,因而对材料的致密化有较大促进作用,可使材料在1 500℃获得致密.烧成温度和材料组成均对Al2O3和ZrO2的平均晶粒尺寸产生影响.显微结构中少量的Al2O3和ZrO2晶粒为晶内分布.引入烧结助剂降低了材料的烧结温度,使材料具有细晶结构,因而具有良好的力学性能,在最佳条件下,样品的抗弯强度可达到778 MPa.  相似文献   

2.
液相烧结氧化铝陶瓷及其烧结动力学分析   总被引:10,自引:3,他引:7  
研究了CuO TiO2复相添加剂对Al2O3陶瓷烧结性能、显微结构的影响以及添加剂形成液相时Al2O3陶瓷的烧结动力学.结果显示:添加剂的加入明显地促进了Al2O3陶瓷的烧结致密度.添加剂含量对致密有明显影响,含量越高,烧结速率越快.当添加剂(CuO TiO2)为2%(质量分数),CuO/TiO2质量比为1/2时,Al2O3样品致密度最高.添加剂的存在使Al2O3晶粒发生较快生长,晶粒形貌为等轴状.通过等温烧结动力学,确定掺杂Al2O3陶瓷烧结激活能为25.2kJ/mol,表明可能是氧离子和铝离子在液相中的扩散作用控制了烧结过程.  相似文献   

3.
超高压成型与无压烧结制备细晶碳化硅陶瓷   总被引:1,自引:0,他引:1  
借助两面顶超高压设备,通过冷等静压和超高压成型制备了相对致密度>60%的SiC陶瓷生体.在低压流动氮气保护下,无压烧结获得了晶粒尺寸在200 nm左右的高致密的SiC陶瓷.利用扫描电镜、X射线衍射对烧结体的断面形貌和相组分进行分析.结果表明:超高压处理能够提高坯体及烧结体的致密度,并有助于抑制晶粒的长大.添加12%烧结助剂[Al2O3(平均粒度约为80 nm)和Y2O3(平均粒度约为50 nm)],经4.5 GPa,6 min超高压成型的SiC样品,在1 850℃或1 900 ℃烧结0.5h后的相对密度分别达到95.3%和98.3%.这种样品的烧结致密化机制为Y3Al5O12液相烧结.  相似文献   

4.
以CaO–MgO–SiO2玻璃为烧结助剂,用液相烧结法制备了氧化铝和3%氧化钇稳定四方氧化锆复相材料。研究了烧结助剂对材料致密化、显微结构及力学性能的影响。结果表明:由于CaO–MgO–SiO2玻璃具有较小的液相粘度,因而对材料的致密化有较大促进作用,可使材料在1500℃获得致密。烧成温度和材料组成均对Al2O3和ZrO2的平均晶粒尺寸产生影响。显微结构中少量的Al2O3和ZrO2晶粒为晶内分布。引入烧结助剂降低了材料的烧结温度,使材料具有细晶结构,因而具有良好的力学性能,在最佳条件下,样品的抗弯强度可达到778MPa。  相似文献   

5.
液相烧结SiC陶瓷   总被引:1,自引:0,他引:1  
采用Al2O3、Y2O3为助烧剂,热压烧结获得了致密的α-SiC和β-SiC陶瓷,研究了起始粉末的性能对烧结体的物相组成和显微结构的影响。实验结果表明,Al2O3、Y2O3原位形成了YAG,材料以液相烧结机制致密化,并通过溶解和再析出机制,促进晶体生长。物相分析表明,β-SiC陶瓷粉末在烧结过程中发生了β→α的相变。显微结构观察显示,β-SiC陶瓷中生成了长柱状晶粒。  相似文献   

6.
以镁砂或尖晶石为骨料,以Al-Al2O3 -MgO混合粉为基质料,采用氮化烧结法制成MgAlON结合镁质和尖晶石质复合材料,研究了烧成温度和基质料中Al2O3、Al比 (质量比,下同 )和Al2O3、MgO比对试样烧结性能的影响。研究表明:以尖晶石为骨料的试样的烧结致密化程度随烧成温度的升高而提高,但以镁砂为骨料的试样在 1400℃时烧结致密化程度最差;随着基质料中Al2O3、Al比的提高,以镁砂为骨料的试样的烧结致密化程度基本上呈增加趋势,以尖晶石为骨料的试样的烧结致密化程度则基本上呈下降趋势;当基质料中Al2O3、MgO比为 2. 33时,以镁砂为骨料的试样的烧结致密化程度最差,而以尖晶石为骨料的试样的烧结致密化程度随着基质料中Al2O3、MgO比的提高而降低。  相似文献   

7.
低温热压氮化硅的烧结机理   总被引:1,自引:0,他引:1  
选择了一种MgO-Al_2O_3-SiO_2系统添加剂,能在1550℃的较低温度(约10wt%液相量,30MPa)将氮化硅材料热压致密化。由于氮化硅和碳纤维在此较低温度能够共存,从而使氮化硅有可能和碳纤维构成复合材料,以改善氮化硅的脆性。 本文研究了在1450—1650℃温度范围内,有液相存在的氮化硅的热压烧结机理和动力学。发现致密化过程与Kingery液相烧结机理较为吻合。过程溶解-扩散-再沉淀阶段的动力学可用ΔL/L_0=K·t~(1/n)表述。温度的差异明显地影响致密化速率;压力和液相量对致密化速率亦有较大影响。  相似文献   

8.
研究了CuO+TiO2复相添加剂对氧化铝陶瓷烧结性能,显微结构的影响以及形成液相时氧化铝陶瓷烧结动力学。添加剂的加入极大的促进了氧化铝陶瓷的烧结。当CuO与TiO2质量比为1:2的时候,氧化铝样品致密度最高。液相含量对致密度有明显影响,液相含量越高,烧结速率越快。添加剂的存在使氧化铝晶粒细化,晶粒形貌为等轴状。利用等温烧结的实验方法研究了烧结动力学,结果表明,是由氧离子和铝离子的扩散作用控制了烧结过程。  相似文献   

9.
NiFe2O4及添加TiO2的尖晶石的烧结过程   总被引:15,自引:6,他引:15  
以NiO和Fe2O3为主要原料,通过添加少量TiO2粉末来改善NiFe2O4试样的烧结性能。研究了NiFe2O4和TiO2-NiFe2O4 2种样品反应烧结过程中的热力学及动力学条件,同时利用球模型推导的扩散机制的烧结方程测算出2种材料的烧结活化能。结果表明:NiO和Fe2O3固相烧结过程是固相反应和致密化过程同时进行的。添加质量分数为1%TiO2粉末,当合成温度为1250℃时,TiO2-NiFe2O4样品就已达到致密,其烧结活化能由NiFe2O4样品时的245.36kJ/mol降低为142.71kJ/mol。  相似文献   

10.
烧结助剂对硼硅钙微晶玻璃结构和介电性能的影响   总被引:1,自引:0,他引:1  
研究了烧结助剂P2O5和ZnO对CaO-B2O3-SiO2(CBS)玻璃粉末的助烧作用及其对材料的相组成、显微结构和介电性能的影响.结果表明:未添加烧结助剂在1000 ℃烧成的样品晶粒粗大(1~3 μm),且结构疏松.复合添加2%(质量分数,下同)P2O5和0.5%ZnO后,850℃烧成的CBS微晶玻璃中,包含有β-CaSiO3,α-SiO2和CaB2O4 3种晶相,晶粒发育细小均匀,粒径为0.5 μm左右,具有一定量的玻璃相,且结构致密.加烧结助剂制得的样品在10 MHz下,相对介电常数εr为6.38,介电损耗tanδ为0.001 8.加复合烧结助剂P2O5和ZnO有效地降低了CBS玻璃粉末的烧结温度(低于900 ℃),可实现银、铜电极共烧.烧结助剂的作用机理是P2O5促进了液相的生成,ZnO则具有提高液相的粘度,增大烧结温度范围,细化晶粒和防止样品变形的作用.  相似文献   

11.
信息集锦     
滑石对细粉和粗粒两种Al2O3液相烧结的影响添加滑石后,细粉Al2O3(平均颗粒尺寸0.31μm)和粗粒Al2O3(平均颗粒尺寸4.49μm)液相烧结时有不同的致密化行为,微观结构的演变也有差别。滑石加入量为0wt%,5wt%,10wt%,在不同温度下烧结2小时。实验结果表明粗粒Al2O3中加入5wt%滑石时,在高于液相形成温度下,由于液相中晶粒的重排促进了致密化的快速进行;而当加入10wt%的滑石时,由于液相比例的增加极大地促进了致密化过程。对于细粉Al2O3来说,由于颗粒相对微细,有较高的活性,并有较大的烧结驱动力,适合低于液相形成温度致密化,而在…  相似文献   

12.
氧化铝添加量对超高压烧结碳化硅性能的影响   总被引:1,自引:0,他引:1  
以纳米SiC为原料,用两面顶压机在4.5 GPa/1 250 ℃/20 min条件下实现了不同Al2O3烧结助剂添加量(0~7%,质量分数,下同)的SiC陶瓷体的烧结.研究了烧结助剂含量对SiC陶瓷性能的影响.用X射线衍射、场发射电子显微镜、能谱分析、显微硬度测试对SiC高压烧结体进行了表征.结果表明:Al2O3是有效的低温烧结助剂,在超高压工艺下添加2%Al2O3即可实现SiC陶瓷全致密化烧结;烧结体晶粒长大得到抑制,晶格常数收缩了约0.45%;烧结体显微硬度随Al2O3含量升高而有所提高.  相似文献   

13.
以LiNO3、Al(NO3)3·9H2O、La(NO3)3·6H2O、ZrO(NO3)2·5H2O为原料,采用溶胶-凝胶法制备Li5.95Al0.35La3Zr2O12粉体,随后加入聚乙烯醇(PVA)水溶液作为液相介质,通过冷烧结工艺制备Li5.95Al0.35La3Zr2O12石榴石固态电解质。冷烧结工艺后采用后续热处理改善离子传导性能。采用质量体积法和电化学阻抗谱对Li5.95Al0.35La3Zr2O12石榴石固态电解质的体积密度和离子电导率进行了测试,采用XRD与SEM进行晶体结构与形貌表征。结果表明,冷烧结时间和压力对样品的晶体结构几乎没有影响。冷烧结时间过长会导致样品开裂,在15~30 min时,冷烧结时间对样品的致密性和电导率影响不大,在烧结时间较短的样品中发现了杂相。提高冷烧结压力可明显提高样品的致密性和电导率,在200℃、510 MPa、30 min的冷烧结条件下可以获得具有较高离子电导率(2.66×10-6 S/cm)的Li5.95Al0.35La3Zr2O12石榴石固态电解质,此时材料的晶界电阻较小。但继续增加冷烧结压力,由于热处理过程中第二相的分解和晶粒生长受到抑制,样品的致密性和电导率反而下降。  相似文献   

14.
采用氧化铝(Al2 O3)和氧化钇(Y2 O3)为烧结助剂,利用无压烧结工艺在低温下制备氮化硅陶瓷材料。利用XRD和SEM等着重研究了无压烧结氮化硅陶瓷低温阶段时的物相组成及其致密化。结果表明:当添加剂含量为10%,烧结温度高于1430℃时,α→β相转变较快;当烧结温度达到1510℃时,α相全部转变为β相。  相似文献   

15.
纳米SiC陶瓷的超高压烧结研究(英文)   总被引:1,自引:0,他引:1  
以纳米SiC为原料,用两面项压机在不同工艺条件下(1 000~1 300℃,4.0~4.5 GPa,15~35 min)实现了40(质量分数,下同)Al2O3烧结助剂添加的SiC陶瓷体的烧结.研究了烧结工艺对SiC陶瓷性能的影响.用X射线衍射、扫描电镜、显微硬度测试仪等对SiC高压烧结体进行了表征.结果表明:Al2O3是有效的低温烧结助剂,在超高压工艺下添加4%Al2O3即可实现SiC陶瓷全致密化烧结;烧结体晶粒长大得到抑制,维持在纳米级,晶格常数收缩了约0.45%;烧结体显微硬度和密度随烧结温度、烧结压力的升高或保温时间的延长而提高.  相似文献   

16.
以高纯商业Y2O3、α-Al2O3和Er2O3粉体为原料,以TEOS(正硅酸乙酯)和MgO为烧结助剂,采用固相反应和真空烧结技术制备了0.5%Er:YAG透明陶瓷,并对样品的致密化行为、显微结构演化和光学性能进行了系统的研究。结果表明:1760℃烧结的Er:YAG透明陶瓷(保温时间50 h)的结构均匀致密,平均晶粒尺寸约为30μm,几乎没有晶界和晶内气孔。厚度为4 mm的Er:YAG陶瓷样品在1 200 nm处的直线透过率高达83.2%,样品的气孔率低达1.96×10–6。  相似文献   

17.
研究了不同AIN配比对AIN-Y2O3液相烧结碳化硅的烧结致密化行为、烧结体的性能的影响.结果发现:AIN-Y2O3系统均可以使SiC达到致密化,配比为AIN60mol%的组成可在1850℃-2000℃的温度范围能够使SiC致密化,系统失重保持在2%左右.高AIN含量的样品中更容易发现"核一壳"结构,在烧结体中均发现氧氮化物的形成.烧结体断裂方式为沿晶断裂,断裂韧性为6-8MPa·m1/2.  相似文献   

18.
分别研究了不同含量Li2CO3/V2O5共掺杂和部分Li取代Mg对Mg4Nb2O9基陶瓷烧结特性、显微结构和微波介电性能的影响.结果表明:Li2CO3/V2O5共掺杂或部分Li取代Mg,均能使Mg4Nb2O9基陶瓷的烧结温度从1 400℃降至950℃,但其烧结机理不同.Li2CO3/V2O5共掺杂Mg4Nb2O9(MNLV)样品中的低熔点液相,使MNLV陶瓷的致密化烧结温度降低.部分Li取代Mg显著降低了(Mg(4-x)Lix)(Nb1.92V0.08)O(9-δ)(MLNV)样品的致密化烧结温度.950℃烧结,相对于MNLV样品的品质因数(Q=13276)而言,MLNV样品的Q值(1 759)显著恶化,这是由于Li1+占据Mg2+晶格.使晶体中非谐振项损耗增加.  相似文献   

19.
以TiO2,MnO2及CaO—Al2O3-SiO2玻璃为烧结助剂,利用液相烧结法制备了氧化铝和3%氧化钇稳定四方氧化锆复相材料。研究了烧结助荆对材料致密化、显微结构及力学性能的影响。结果表明:除TiO2可与ZrO2晶粒形成部分固溶外,烧结助剂主要以晶间玻璃相的形式存在,并影响了Y2P3在ZrO2晶粒中的分布。烧结助荆的引入显著促进材料的致密化,降低了烧结温度,使材料具有细晶结构,因而具有良好的力学性能。  相似文献   

20.
热压烧结细晶粒氧化铝陶瓷(英文)   总被引:3,自引:1,他引:2  
以沉淀法制各的商业α-Al2O3粉体为原料,自制镁铝硅玻璃为烧结助剂,采用热压烧结工艺低温制备高性能氧化铝陶瓷.用Archimedes法、电子探针和三点弯曲法研究了氧化铝陶瓷的致密化行为、显微结构和力学性能.结果表明:在1400℃烧结的氧化铝陶瓷的相对密度高达98.9%,晶粒细小,平均晶粒尺寸约为0.6μm,晶界上有莫来石相析出,样品的抗弯强度和断裂韧性分别达442MPa和4.7MPa·m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号