首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an adaptive decision feedback equalizer (DFE) based multiuser receiver for code division multiple access (CDMA) systems over smoothly time-varying multipath fading channels using the two-step LMS-type algorithm. The frequency-selective fading channel is modeled as a tapped-delay-line filter with smoothly time-varying Rayleigh-distributed tap coefficients. The receiver uses an adaptive minimum mean square error (MMSE) multiuser channel estimator based on the reduced Kalman least mean square (RK-LMS) algorithm to predict these tap coefficients (Kohli and Mehra, Wireless Personal Communication 46:507–521, 2008). We propose the design of adaptive MMSE feedforward and feedback filters by using the estimated channel response. Unlike the previously available Kalman filtering algorithm based approach (Chen and Chen, IEEE Transactions on Signal Processing 49:1523–1532, 2001), the incorporation of RK-LMS algorithm reduces the computational complexity of multiuser receiver. The computer simulation results are presented to show the substantial improvement in its bit error rate performance over the conventional LMS algorithm based receiver. It can be inferred that the proposed multiuser receiver proves to be robust against the nonstationarity introduced due to channel variations, and it is also beneficial for the multiuser interference cancellation and data detection in CDMA systems.  相似文献   

2.
Proposes a suboptimal low-complexity multiuser receiver for synchronous CDMA frequency-selective Rayleigh fading channels. In contrast to the conventional RAKE receiver, which suffers from near-far effects due to channel fading, the proposed multiuser receiver is shown to alleviate the near-far problem while preserving multipath diversity gain. This is demonstrated by comparing the symbol error probability and asymptotic multiuser efficiency of the proposed multiuser detector and RAKE receiver  相似文献   

3.
Multipath fading severely limits the performances of conventional code division multiple-access (CDMA) systems. Since every signal passes through an independent frequency-selective fading channel, even modest cross-correlations among signature sequences may induce severe near-far effects in a central multiuser receiver. This paper presents a systematic approach to the detection problem in CDMA frequency-selective fading channels and proposes a low complexity linear multiuser receiver, which eliminates fading induced near-far problem.We initially analyze an optimal multiuser detector, consisting of a bank of RAKE filters followed by a dynamic programming algorithm and evaluate its performance through error probability bounds. The concepts of error sequence decomposition and asymptotic multiuser efficiency, used to characterize the optimal receiver performance, are extended to multipath fading channels.The complexity of the optimal detector motivates the work on a near-far resistant, low complexity decorrelating multiuser detector, which exploits multipath diversity by using a multipath decorrelating filter followed by maximal-ratio combining. Analytic expressions for error probability and asymptotic multiuser efficiency of the suboptimal receiver are derived that include the effects of multipath fading, multiple-access interference and signature sequences correlation on the receiver's performance.The results indicate that multiuser detectors not only alleviate the near-far problem but approach single-user RAKE performance, while preserving the multipath diversity gain. In interference-limited scenarios multiuser receivers significantly outperform the RAKE receiver.This paper was presented in part at the Twenty-Sixth Annual Conference on Information Sciences and Systems, Princeton, NJ, March 1992 and MILCOM'92, San Diego, CA, October 1992. This work was performed while author was with the Department of Electrical and Computer Engineering, Northeastern University, Boston, USA.  相似文献   

4.
Previously, we proposed a differential space-code modulation (DSCM) scheme that integrates the strength of differential space-time coding and spreading to achieve interference suppression and resistance to time-varying channel fading in single-user environments. In this paper, we consider the problem of multiuser receiver design for code-division multiple-access (CDMA) systems that utilize DSCM for transmission. In particular, we propose two differential receivers for such systems. These differential receivers do not require the channel state information (CSI) for detection and, still, are resistant to multiuser interference (MUI) and time-varying channel fading. We also propose a coherent receiver that requires only the CSI of the desired user for detection. The coherent receiver yields improved performance over the differential receivers when reliable channel estimates are available (e.g., in slowly fading channels). The proposed differential/coherent receivers are decorrelative schemes that decouple the detection of different users. Both long and short spreading codes can be employed in these schemes. Numerical examples are presented to demonstrate the effectiveness of the proposed receivers.  相似文献   

5.
In this paper, we consider the receiver design problem for the uplink multiuser code division multiple access (CDMA) communication system based on the neural network technique. The uplink multiuser CDMA communication system model is described in the form of space–time domain through antenna array and multipath fading expression. Novel suitable neural network technique is proposed as an effective signal processing method for the receiver of such an uplink multiuser CDMA system. By the appropriate choice of the channel state information for the neural network parameters, the neural network can collectively resolve the effects of both the inter-symbol interference due to the multipath fading channel and the multiple access interference in the receiver of the uplink multiuser CDMA communication system. The dynamics of the proposed neural network receiver for the uplink multiuser CDMA communication system is also studied.  相似文献   

6.
聂景楠  程时昕 《电子学报》1997,25(1):24-27,32
本文针对频率选择性Rayleigh衰落信道,设计了一种CDMA多用户检测器分集结构,通过该结构,高斯信道多用户检测算法可以有效地应用到Rayleigh衰落信道中,仿真结果表明,分集合并实现的多用户中以显著改善衰落信道的误码性能,其处理多址干扰能力并不因分集而受到影响,另外,本文还对不同的合并以及不同的检测地作了性能上的比较。  相似文献   

7.
In this paper, we study the use of channel coding in a direct‐sequence code‐division multiple‐access (DS‐CDMA) system that employs space‐time adaptive minimum‐mean square‐error (MMSE) interference suppression over Rayleigh fading channels. It is shown that the employment of adaptive antenna arrays at the receiver can assist in attenuating multiuser interference and at the same time speeds‐up the convergence rate of the adaptive receiver. In this work, we assess the accuracy of the theoretical results developed for the uncoded and convolutionally coded space‐time multiuser detector when applied to the adaptive case. It is found that the use of antenna arrays brings the receiver performance very close to its multiuser counterpart. Using performance error bounds, we show that a user‐capacity gain of approximately 200% can easily be achieved for the space‐time adaptive detector when used with a rate 1/2 convolutional code (CC) and a practical channel interleaver. This capacity gain is only 10% less than the gain achieved for the more complicated multiuser‐based receiver. Finally, we perform a comparison between convolutional and turbo coding where we find that the latter outperforms the former at all practical bit‐error rates (BER). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Multiuser detection for asynchronous code division multiple access (CDMA) data transmission over the time-dispersive two-path Rician fading channel is considered. The multiuser maximum likelihood sequence detector (MLSD) is derived, and an equivalence of the fading channel to an asynchronous Gaussian intersymbol interference (AGISI) CDMA channel is established. However, the MLSD is found to be implementationally infeasible and this motivates the derivation of the optimum linear detector with near/far resistance as the performance criterion. The optimally near/far resistant linear time-invariant K-user detector is shown to consist of a cascade of a 2 K input/K output linear multiuser diversity combining filter followed by a K input/K output decorrelator that is designed for the equivalent AGISI/CDMA channel. This detector solves the near/far problem and also supports significantly higher bandwidth efficiencies for CDMA communication over the fading channel than does the conventional near/far limited single-user diversity combiner. The performance penalties incurred by multiuser detectors designed for the Gaussian channel when used over the Rician fading channel are also analytically characterized. It is shown that these penalties can be significant, making the case for the use of multiuser detectors optimized for this fading channel, particularly the optimum linear detector due to its relative implementational simplicity  相似文献   

9.
The presence of both multiple-access interference (MAI) and intersymbol interference (ISI) constitutes a major impediment to reliable communications in multipath code-division multiple-access (CDMA) channels. In this paper, an iterative receiver structure is proposed for decoding multiuser information data in a convolutionally coded asynchronous multipath DS-CDMA system. The receiver performs two successive soft-output decisions, achieved by a soft-input soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders, through an iterative process. At each iteration, extrinsic information is extracted from detection and decoding stages and is then used as a priori information in the next iteration, just as in turbo decoding. Given the multipath CDMA channel model, a direct implementation of a sliding-window SISO multiuser detector has a prohibitive computational complexity. A low-complexity SISO multiuser detector is developed based on a novel nonlinear interference suppression technique, which makes use of both soft interference cancellation and instantaneous linear minimum mean-square error filtering. The properties of such a nonlinear interference suppressor are examined, and an efficient recursive implementation is derived. Simulation results demonstrate that the proposed low complexity iterative receiver structure for interference suppression and decoding offers significant performance gain over the traditional noniterative receiver structure. Moreover, at high signal-to-noise ratio, the detrimental effects of MAI and ISI in the channel can almost be completely overcome by iterative processing, and single-user performance can be approached  相似文献   

10.
This paper presents adaptive multiuser detectors for code-division multiple-access (CDMA) signals in wireless communication systems. Directly estimated adaptive (DEA) detectors are developed by formulating CDMA detection as an inverse problem in the presence of channel-induced interference and noise. The detector parameters are computed by a fully sequential adaptive algorithm that requires no matrix inversion, and can be implemented online as the data arrive at the receiver. The proposed DEA detector is experimentally evaluated in terms of its robustness to noise, resistance to the near-far problem, and ability to handle multipath fading signals. This experimental study indicates that the proposed DEA detector requires shorter training sequences of bits to achieve the performance levels attained by existing adaptive implementations of the minimum mean-square error detector.  相似文献   

11.
The performance of antenna diversity coherent and differentially coherent linear multiuser receivers is analyzed in frequency-nonselective Rayleigh fading CDMA channels with memory. The estimates of the complex fading processes are utilized for maximal-ratio combining and carrier recovery of the coherent multiuser receiver. To analyze the impact of channel estimation errors on the receiver performance, error probability is assessed directly in terms of the fading rate and the number of active users, showing the penalty imposed by imperfect channel estimation as well as the fading-induced error probability floor. The impact of fading dynamics on the differentially coherent decorrelating receiver with equal-gain combining is quantified. While performance of multiuser receivers at lower SNR is determined by both the fading dynamics and the number of active CDMA users, performance at higher SNR is given by an error probability floor which is due to fading only and has the same value as in a single-user case. The comparison of the two receiver structures indicates that the coherent decorrelating receiver with diversity reception may be preferable to the differentially coherent one in nonselective fading CDMA channels with memory.  相似文献   

12.
This paper deals with a cancellation multiuser detector for CDMA communication systems. The proposed receiver, defined as selective partial parallel interference cancellation (SP‐PIC), is supposed to be used at the end of an up‐link channel characterized by multipath fading phenomena. The SP‐PIC main feature is to perform a weighted selective cancellation of the co‐channel interfering signals according to the received power level. With respect to other approaches, the proposed detector exhibits an improved bit error rate (BER) and a low computational complexity, linear with the number of users. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
为了在TD-SCDMA上行链路传输中获得更高的频谱利用率,提出了一种上行链路的发送和接收方案。发送端采用准同步CDMA加QAM调制,扩频序列采用优选相位的Gold序列,该序列在一定时延范围内具有良好的互相关性。接收端采用串行干扰抵消的方法去除或抑制很严重的多用户干扰,该方法实现简单,适合瑞利衰落信道。仿真结果说明采用这种发送和接收方案后,在应用智能天线抑制多径后,只要用户间的时延控制在3/8个chip之内,误符号率(SER)性能就几乎与单用户界(SUB)一致,频谱利用率可以达到4 bit/s/Hz。  相似文献   

14.
Turbo编码DS/CDMA系统中的迭代多用户接收器   总被引:1,自引:1,他引:0  
本文提出了一种用于Turbo编码DS/CDMA系统的迭代多用户接收器。该接收器由一个软输入/软输出(SISO)的多用户检测器和一组单用户SISO信道译码器组成。每次迭代过程中,多用户检测器和信道译码器都输出信息作为下一代迭代的先验信息,仿真结果表明,这种接收器的比特误码性能接近Turbo编码系统的单用户限。  相似文献   

15.
A new iterative receiver for joint detection and decoding of code division multiple access (CDMA) signals is presented. The new scheme is based on a combination of the minimum mean square error (MMSE) criterion and the turbo processing principle by Hagenauer (see Proc. Int. Symp. Turbo Codes and Related Topics, Brest, France, p.1-9, 1997). The complexity of the new scheme is of polynomial order in the number of users. The new scheme is applicable to two situations: (a) when the receiver is capable of decoding the signals from all users and (b) when the receiver is only capable of decoding the signals from a subset of users. In the first scenario, we establish that the proposed receiver achieves superior performance to the iterative soft interference cancellation technique under certain conditions. On the other hand, in the second scenario, we argue that the proposed receiver outperforms both the iterative soft interference canceler and the iterative maximum a posteriori (MAP) receiver because of its superior near-far resistance. For operation over fading channels, the estimation of the complex fading parameters for all users becomes an important ingredient in any multiuser detector. In our scheme, the soft information provided by the decoders is used to enhance this estimation process. Two iterative soft-input channel estimation algorithms are presented: the first is based on the MMSE criterion, and the second is a lower-complexity approximation of the first. The proposed multiuser detection algorithm(s) are suitable for both terrestrial and satellite applications of CDMA  相似文献   

16.
Blind adaptive multiuser detection for direct sequence code division multiple access (DS-CDMA) signals over static and time-varying intersymbol interference (ISI) limited channels is considered. Blind adaptive detectors must be robustified for ISI channels, when there is significant mismatch between the received signature vector and the transmitted code (assumed known at the receiver). A new low-complexity detector is presented that improves on some previously proposed methods without explicit estimation of the ISI channel. The key innovation is a reduced-rank detector architecture combined with an efficient subspace tracker that yields direct accurate estimation of the desired user's received signature. Several representative simulation examples of detector output signal-to-noise-and-interference ratio (SINR) for fading channels are provided in support of our claims of improved efficacy of the method  相似文献   

17.
Liu  H. Siveski  Z. 《Electronics letters》1997,33(9):741-743
A coherent multiuser decorrelating detector for an asynchronous CDMA, time-varying Rayleigh fading channel is proposed and analysed. The detector uses fractionally sampled correlators outputs at time instants corresponding to users relative delays to simultaneously achieve two goals: the novel realisation of a one-shot decorrelator with lower computational complexity; and to exploit a form of the time diversity for improved error performance compared to symbol spaced sampling  相似文献   

18.
In a CDMA communication network using conventional signal detection, system capacity is limited and its performance is degraded by the multi-access interference (MAI). Multiuser detection, which makes use of cross-correlation information between spread spectrum codes, can reduce or eliminate the MAI in a Gaussian channel so as to mitigate the near-far effects and increase the system capacity. This paper extends the multiuser detector to a flat Rayleigh fading CDMA environment, and discusses the bit error rate of typical multiuser detection algorithms in such a environment by combining theoretical analysis and computer simulation. It is shown that multiuser detection is superior to conventional detections in the flat Rayleigh fading channels.  相似文献   

19.
在采用传统信号检测方式的CDMA无线通信网中,多址干扰限制了系统的容量和性能。多用户信号检测利用扩频码互相关信息在高斯信道中可以减小或消除多址干扰,缓解远近效应,增加系统容量。本文将多用户检测器直接用于平坦瑞利衰落的CDMA环境中,用分析与仿真相结合的方法讨论了典型多用户算法的误码性能。结果表明,平坦瑞利衰落信道中多用户检测算法的性能仍然优于传统检测算法。  相似文献   

20.
In this paper, a new multiuser detector combining decorrelating detector and multicarrier transmission scheme is proposed and analyzed in a frequency selective Rayleigh fading channel. The bit error probability and asymptotic multiuser efficiency are derived as performance measures. From numerical results, it is shown that the proposed detector achieves better BER performance and lower computational complexity compared to a conventional decorrelating detector. It is also shown that the proposed detector is robust to partial narrowband interference, and alleviates near-far problem effectively. The results in this paper can be applied to design of a wideband CDMA system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号