首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The variation of the d.c. electrical conductivity, , with composition and temperature was investigated for glasses of the Ge-In-Se system. The results indicate a decrease in the activation energy for electrical conductivity, E, and an increase in on introduction of indium into Ge-Se glasses. The changes in E and with composition (selenium content in the glasses) are identical for the Gex In5 Se95–x and Gex In8Se92–x families. The results have been traced to the conduction controlled by charged defects in these chalcogenide glasses. The changes in E and have been explained by a shift in the Fermi level, being brought by the introduction of indium.  相似文献   

2.
The a.c. electrical conductivity ( ac), thermoelectric power () and dielectric constant () of antiferromagnetic NiWO4 are presented. ac and have been measured in the temperature range 300 to 1000 K and in the temperature range 600 to 1000 K. Conductivity data are interpreted in the light of band theory of solids. The compound obeys the exponential law of conductivity = 0 exp (–W/kT). Activation energy has been estimated as 0.75eV. The conductivity result is summarized in the following equation =2.86 exp (–0.75 eV/kT)–1 cm–1 in the intrinsic region. The material is p-type below 660 K and above 950 K, and is n-type between 660 and 950 K.  相似文献   

3.
Ionic and electronic conductivity in some simple lithium salts   总被引:3,自引:0,他引:3  
The electrical conductivity () and thermoelectric power (S) of Li3VO4, Li3PO4 and Li3BO3 solidified melts are presented in the temperature range from 415 K to the melting point of each solid. The ionic ( i,) and electronic ( e) contributions to have been separated over the entire temperature range with the help of a time-dependence study of the d.c. electrical conductivity. Superionic phases in all three solids have been observed below their melting points in which the conductivity is almost purely ionic. The value of the phase transition temperature below which the solid transforms from superionic to normal phase has been obtained. It has been shown that in the normal phase, these solids are mixed conductors. Data for the temperature variations of both i, and e are also presented and discussed.  相似文献   

4.
Elastic-plastic two-dimensional (2D) and three-dimensional (3D) finite element models (FEM) are used to analyze the stress distributions ahead of notches of four-point bending (4PB) and three-point bending (3PB) specimens with various sizes of a C-Mn steel. By accurately measuring the location of the cleavage initiation sites, the local cleavage fracture stress f and the macroscopic cleavage fracture stress F is accurately measured. The f and F measured by 2D FEM are higher than that by 3D FEM. f values are lower than the F, and the f values could be predicted by f=(0.8––1.0)F. With increasing specimen sizes (W,B and a) and specimen widths (B) and changing loading methods (4PB and 3PB), the fracture load P f changes considerably, but the F and f remain nearly constant. The stable lower boundary F and f values could be obtained by using notched specimens with sizes larger than the Griffiths–Owen specimen. The local cleavage fracture stress f could be accurately used in the analysis of fracture micromechanism, and to characterize intrinsic toughness of steel. The macroscopic cleavage fracture stress F is suggested to be a potential engineering parameter which can be used to assess fracture toughness of steel and to design engineering structure.  相似文献   

5.
Experimental data on fracture stress of polycarbonate (PC) with and without various artificial notches have been obtained at atmospheric pressure and a high hydrostatic pressure (400 MPa). The difference in fracture stress, F, between both pressures was directly proportional to the intensity of pressure,P, and was inversely proportional to the stress concentration factor of the notch,K n such that F following the form of the Kaieda-Oguchi formula, F. By using the combined stress concentration factor,K nc, of superposed notch and craze, and by considering the change in elastic modulus due to pressure, the experimental data agreed with the modified Kaieda-Oguchi formula. The stress concentration factor of the craze was calculated by using the Dugdale model.  相似文献   

6.
The tensile stress relaxation behaviour of hot-drawn low density polyethylene, (LDPE), has been investigated at room temperature at various draw ratios. The drawing was performed at 85° C. The main result was an increase in relaxation rate in the draw direction, especially at low draw ratios when compared to the relaxation behaviour of the isotropic material. This is attributed to a lowering of the internal stress. The position of the relaxation curves along the log time axis was also changed as a result of the drawing, corresponding to a shift to shorter times. The activation volume, , varied with the initial effective stress 0 * according to 0 * 10kT, where 0 * =0i, is the difference between the applied initial stress, 0, and the internal stress i. This result supports earlier findings relating to similarities in the stress relaxation behaviour of different solids.  相似文献   

7.
    
We have measured the in-plane longitudinal resistivities a and b as functions of temperature and magnetic field. The measurements were all made on the same detwinned single crystal of YBa2Cu3O7 – (YBCO). DefiningT c to be at the onset of resistance, it is the same for a and b in a magnetic field ranging from 0 to 3.5 T. In zero field,T c = 93.4 K, so the oxygen doping of the crystal was approximately optimal. In the mixed state, the anisotropy ratio of the resistivities ( a/b) decreases with decreasingT orH, and the chain conductivity ( b-a) is smaller than the plane conductivity ( a). Both a and b increase with decreasing temperature, and so does ( b-a).  相似文献   

8.
Rayleigh's method is used to find the electric potentials of a composite of poly-dispered spherical particles in a linear continuum in an external electric field. Based on the solutions of potentials, analytical formula for the effective electric conductivity is derived. Based on the formula, several factors, such as the number of spherical inclusions, the spatial distribution of the spheres, the contrast ratio i / h (where, i and h are the conductivities of the spherical inclusion and the host medium, respectively) and volume fraction of the inclusions, are discussed. Our results show that at high volume fraction, the effective conductivity is also affected by the spatial distribution of the inclusions.  相似文献   

9.
The dielectric constants and loss factors,, for pure single-crystal MgO and for Fe-and Cr-doped crystals have been measured at frequencies, , from 500 Hz to 500 kHz at room temperature. For pure MgO at 1 kHz the values of and the loss tangent, tan , (9.62 and 2.16×10–3, respectively) agree well with the data of Von Hippel; the conductivity, , varies as n withn=0.98±0.02. In Fe-doped crystals increases with Fe-concentration (at any given frequency); for a crystal doped with 12800 ppm Fe, was about four times the value for pure MgO. At all concentrations the variation of log with log was linear andn=0.98±0.02. A decrease in with increasing Fe-concentration was also observed. A similar, although less pronounced, behaviour was found in Cr-doped crystals. The effects are discussed in terms of hopping mechanisms.  相似文献   

10.
Summary Cylinder under combined loadings (pressure, bending, axial force) is subject to non-linear creep described by Norton-Odqvist creep law. In view of bending a circularly-symmetric cross-section is no longer optimal in this case. Hence we optimize the shape of the cross-section; minimal area being the design objective under the constraint of creep rupture. Kachanov-Sdobyrev hypothesis of brittle creep rupture is applied. The solution is based on the perturbation method (expansions into double series of small parameters), adjusted to optimization problems.Notation A cross-sectional area - C, , creep rupture constants - K, n, C , C creep constants - F dimensionless creep modulus - M bending moment - N axial force - a(),b() internal and external radii of the cross-section - j creep modulus - p internal pressure - r, ,z cylindrical coordinates - s r ,s ,s z ,t r dimensionless stresses - t R time to rupture - stress function - , () dimensionless internal and external radii - e effective strain rate - kl strain rates - rate of curvature - rate of elongation of the central axis - dimensionless radius - e effective stress - I maximal principal stress - S Sdobyrev's reduced stress - r , , z , r components of the stress tensor - measure of material continuity - measure of deterioration With 7 Figures  相似文献   

11.
Thermopower and electrical conductivity data for both single crystal and polycrystalline undoped CoO are considered in terms of a defect disorder model based on doubly ionized cobalt vacancies as the predominant defects. The analysis, based on the Debye-Hückel theory for liquid electrolytes, aims at an evaluation of the interactions between defects such as doubly ionized cation vacancies. It was shown that, in the temperature range 1200–1700 K, the reciprocals of the partial pressure of oxygen p(O2) exponent of thermopower and electrical conductivity vary between 3.6 < n < 4.2 and 3.5 < n < 3.8, respectively. About 1300 K, both n and n are higher for single crystal than for the polycrystalline specimens. It was shown that closer agreement between the defect model and experimental data can be obtained by introducing defect activities instead of concentrations.  相似文献   

12.
Deformation of a carbon-epoxy composite under hydrostatic pressure   总被引:1,自引:0,他引:1  
This paper describes the behaviour of a carbon-fibre reinforced epoxy composite when deformed in compression under high hydrostatic confining pressures. The composite consisted of 36% by volume of continuous fibres of Modmur Type II embedded in Epikote 828 epoxy resin. When deformed under pressures of less than 100 MPa the composite failed by longitudinal splitting, but splitting was suppressed at higher pressures (up to 500 MPa) and failure was by kinking. The failure strength of the composite increased rapidly with increasing confining pressure, though the elastic modulus remained constant. This suggests that the pressure effects were introduced by fracture processes. Microscopical examination of the kinked structures showed that the carbon fibres in the kink bands were broken into many fairly uniform short lengths. A model for kinking in the composite is suggested which involves the buckling and fracture of the carbon fibres.List of symbols d diameter of fibre - E f elastic modulus of fibre - E m elastic modulus of epoxy - G m shear modulus of epoxy - k radius of gyration of fibre section - l length of buckle in fibre - P confining pressure (= 2 = 3) - R radius of bent fibre - V f volume fraction of fibres in composite - t, c bending strains in fibres - angle between the plane of fracture and 1 - 1 principal stress - 3 confining pressure - c strength of composite - f strength of fibre in buckling mode - n normal stress on a fracture plane - m strength of epoxy matrix - shear stress - tangent slope of Mohr envelope - slope of pressure versus strength curves in Figs. 3 and 4.  相似文献   

13.
Steady-state creep behaviour of a 25 wt % Cr-20 wt % Ni stainless steel without precipitates was studied in the stress range 9.8 to 39.2 MPa at temperatures between 1133 and 1193 K. The results of stress-drop tests indicate that, in the steady-state creep region, diffusion-controlled recovery creep is dominant. Such recovery creep can be accounted for in terms of the composition of the internal stress, i=s+c, except in the case of fine-grained specimens where d<80 m, whered is the mean grain diameter, s is possible to reduce easily and is comparable to the driving stress for creep, and c is the persistent stress field due to metastable substructure. In the fine-grained specimens, it is suggested that the steady-state creep is dominantly controlled by grain boundaries.  相似文献   

14.
The stress exponent of steady state creep,n, and the internal ( i) and effective stresses ( e) have been determined using the strain transient dip test for a series of polycrystalline Al-Mg alloys creep tested at 300° C and compared with previously published data. The internal or dislocation back stress, i, varied with applied stress,, but was insensitive to magnesium content of the alloy, being represented by the empirical equation i=1.084 1.802. Such an applied stress dependence of i can be explained by using an equation for i of the form i (dislocation density)1/2 and published values for the stress dependence of dislocation density. Values of the friction stress, f, derived using the equation e/=(1–c) (1– f/), indicate that f is not dependent on the magnesium content. A constant value of f can best be rationalized by postulating that the creep dislocation structure is relatively insensitive to the magnesium content of the alloy.On leave from Engineering Materials Department, University of Windsor, Windsor, Ontario N9B 3P4, Canada.  相似文献   

15.
The various stages of crack propagation in rubber-toughened amorphous polymers (onset and arrest, stable and unstable growth) are governed by the rate of energy dissipation in the cracktip damaged zone; hence the relationship between the applied stress intensity factorK 1 and the damaged zone size is of utmost importance. The size of the crack-tip damaged zone has been related toK 1 via a parameter which is characteristic of the material in given conditions: this factor is proportional to the threshold stress for damage initiation in a triaxial stress field, and has been denoted by *. Theoretical values of * have been calculated by means of a micromechanical model involving the derivation of the stresses near the particles and the application of damage initiation criteria. The morphology, average size and volume fraction of the rubbery particles have been taken into account together with the nature of the matrix. The calculated values of * have been successfully compared with the experimental ones, for a wide set of high-impact polystyrenes (HIPS) and rubber-toughened poly(methyl methacrylate) (RTPMMA).Nomenclature PS; HIPS polystyrene; high-impact polystyrene - PMMA; RTPMMA poly(methyl methacrylate); rubber-toughened PMMA - MI; CS/H; CS/R particle morphologies (multiple inclusion; hard core - rubber shell; rubber core - rigid shell) - K r;K g bulk moduli of rubber and glassy materials - G r;G g shear moduli of the same materials - v p particle volume fraction - L mean centre-to-centre distance between neighbouring particles - B; H; W standard names for the dimensions of the compact tension specimen - R y size of the crack-tip plastic zone in a homogeneous material - h half thickness of the crack-tip damaged zone - r; polar coordinates around the crack tip (Fig. 1) - r;r p distance from particle centre; particle radius - p normalized distance from the particle (Equation 5) - K 1;K 1c;K 1p stress intensity factor; critical values ofK 1 at the onset of and during crack growth - G 1c plane strain energy release rate - y yield stress in uniaxial tension - th macroscopic threshold stress for the onset of local damage initiation in a composite material - * characteristic parameter (Equation 3) - 0; 1 0 ; 2 0 ; 3 0 applied stress tensor and its three principal stresses - 0 uniaxial applied stress - ; 1; 2; 3 local stress tensor and its three principal stresses - A tensor which elements are the ratios of those of over those of 0 (Equation 4) - v Poisson's coefficient of the matrix - g triaxiality factor of the crack-tip stress field - e; p Mises equivalent stress; dilatational stress (negative pressure) - I 1;I 2 invariants of the stress tensor - U 1;U 2 material parameters for argon and Hannoosh's craze initiation criterion (Equation 12)  相似文献   

16.
A millimeter wave spectrometer for frequencies between 100 and 350 GHz consisting of continuously tunable backward wave oscillators as sources and a quasioptical interferometer in the Mach-Zehnder configuration was used to measure the transmittivity in phase and amplitude of YBa2Cu3O7 thin films on NdGaO3 substrates. From the measured spectra we derived the real and imaginary part of the dynamic conductivity= 1+i 2 in the superconducting state as a function of temperature. The 1(T) and 2(T) values at 300 GHz were compared to corresponding values at 19 GHz determined by surface impedance measurements of the same films using a shielded dielectric resonator. Our observed frequency dependence of both 1(T) and 2(T) is consistent with a strong reduction of the quasiparticle scattering rate –1(T) with decreasing temperature belowT c .  相似文献   

17.
Based on a theoretical model developed previously by the authors in Part II of this series for a single fibre pull-out test, a methodology for the evaluation of interfacial properties of fibre-matrix composites is presented to determine the interfacial fracture toughness G c, the friction coefficient , the radial residual clamping stress q o and the critical bonded fibre length z max. An important parameter, the stress drop , which is defined as the difference between the maximum debond stress d * and the initial frictional pull-out stress fr, is introduced to characterize the interfacial debonding and fibre pull-out behaviour. The maximum logarithmic stress drop, In(), is obtained when the embedded fibre length L is equal to the critical bonded fibre length z max. The slope of the In()-L curve for L bigger than z max is found to be a constant that is related to the interfacial friction coefficient . The effect of fibre anisotropy on fibre debonding and fibre pull-out is also included in this analysis. Published experimental data for several fibre-matrix composites are chosen to evaluate their interfacial properties by using the present methodology.On leave at the Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.  相似文献   

18.
Shallow cavity flows driven by horizontal temperature gradients are analysed over a range of Rayleigh numbersR and Prandtl numbers , whereR is comparable in size to the aspect ratioL(1). Eigenvalue calculations show the existence of a critical Prandtl number R > R c (), below which the parallel core-flow structure is destroyed for Rayleigh numbersR>R c(). For other Rayleigh numbers and Prandtl numbers the horizontal scale of influence of the end walls of the cavity is determined.  相似文献   

19.
The square of the ratio of the abraded bending strength, d, to the unabraded bending strength, , is proposed as a measure of the resistance to crack propagation in ceramic materials. Data for various porcelains, glass-ceramics, and glasses showed that d is essentially constant and that (d/)2 decreased rapidly with increase of the unabraded strength.  相似文献   

20.
The fatigue behaviour of commercially pure aluminium and of nylon under sequentially varying strain amplitudes is compared with a damage law of the type suggested by Miner. Aluminium obeys such a law for both cyclic and uniaxial prestrains but the behaviour of nylon is significantly affected by microcracking, which produces a marked effect of loading sequence.Appendix N Number of strain cycles at a given time - N f Value of N at failure - True tensile stress - True stress range for a strain cycled specimen - h Value of at half the life of the specimen - True tensile strain - Total true strain range - p True plastic strain range (= the breadth of the hysteresis loop at = 0) - d True diametral strain range - E Young's modulus - Linear strain hardening rate when tested at a particular value of p - D Damage due to cycling - D p Damage due to prestrain - p Prestrain. C, K, K1, , are constants  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号