首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a series of centrifuge model tests designed to assess the increase in capacity of dynamic anchors due to setup in normally consolidated clay. The tests involved measurement of the vertical capacity of 1:200 reduced scale model anchors following various periods of postinstallation consolidation. The short-term capacity was shown to be dependent on the anchor impact velocity. Cavity expansion solutions for consolidation around a solid driven pile were found to provide agreement with the experimental results. A simplified capacity calculation technique predicted higher friction ratio values than is typically observed for driven piles; however, these calculations were complicated by the unusual dynamic anchor load–displacement response and uncertainty regarding the true sample shear strength. Dynamic anchor consolidation proceeds at a slower rate than for suction caissons and open-ended piles of similar equivalent diameter. However, the results indicate that depending on the site conditions, dynamically installed anchors remain a viable alternative to conventional deep-water mooring techniques.  相似文献   

2.
Integral bridges can significantly reduce maintenance and repair costs compared with conventional bridges. However, uncertainties have arisen in the design as the soil experiences temperature-induced cyclic loading behind the abutments. This paper presents the results from an experimental program on the behavior of Atherfield clay, a stiff clay from the United Kingdom, behind embedded integral abutments. Specimens were subjected to the stress paths and levels of cyclic straining that a typical embedded integral abutment might impose on its retained soil. The results show that daily and annual temperature changes can cause significant horizontal stress variations behind such abutments. However, no buildup in lateral earth pressure with successive cycles was observed for this typical stiff clay, and the stress–strain behavior and stiffness behavior were not influenced by continued cycling. The implications of the results for integral abutment design are discussed.  相似文献   

3.
An experimental study was conducted to measure small-strain shear moduli of chemically treated sulfate-bearing expansive soils using the bender element test. The bender element test was chosen because it provides reliable and repeatable small strain shear modulus measurements and allows for the periodical monitoring of stiffness property responses of soil specimens under varying curing conditions. Bender element tests were conducted on cement and lime treated soils and the results were then analyzed to study the variations in stiffness properties of soil specimens at different sulfate levels and curing conditions. Both cement and lime treated natural and artificial clays with low sulfate level of 1,000?ppm showed considerable enhancements in small strain shear moduli, whereas the same treated soils at high sulfate level of 10,000?ppm showed less enhancements in shear moduli due to sulfate heaving. Also, enhancements in shear moduli were lower for soil specimens continuously soaked under water compared to those cured in the humidity room. Rates of stiffness enhancements due to stabilizer type, compaction moisture content, type of curing, and sulfate levels are quantified and summarized.  相似文献   

4.
In this note it is shown that the combination of conventional laminas (possessing positive Poisson’s ratio) and auxetic laminas (possessing negative Poisson’s ratio) gives rise to effective in-plane composite laminate Young’s modulus that surpasses the rule-of-mixture formula. To enable comparison between the developed model with the rule-of-mixture, the former is presented in such a way that two correction functions exist distinctively for multiplication into the two terms of the rule-of-mixture formula. Each of the two correction functions reduces to a minimum of 1 when all laminas possess equal Poisson’s ratio, and the correction functions are greater than one when there exists mismatch in the Poisson’s ratios among the laminas in the laminate. Plotted results show that the overshooting of the laminate’s effective in-plane modulus is significant for semiauxetic laminates but not for conventional and fully auxetic materials.  相似文献   

5.
Immediate and long-term settlement checks are an integral part of foundation design. Therefore, reasonably accurate estimates of the immediate settlement of shallow foundations bearing on clay are necessary, particularly for highly plastic clays or organic soils, for which the immediate settlement may be significant. This immediate settlement is due entirely to the distortion of the clay underneath the shallow foundations because, in the short term, there is no opportunity for change in the clay volume. Since soil stress-strain response is nonlinear even at small strains, design procedures based on linear elasticity cannot accurately predict soil deformations. Hence, an immediate settlement analysis that takes soil nonlinearity into account is needed. In this paper, finite-element analysis is used to develop design charts that can be used to estimate the immediate settlement of axially loaded square, rectangular, and strip footings bearing on clay. The clay is modeled with a simple nonlinear constitutive relationship. A design example is included to illustrate how the proposed procedure can be readily applied in practice with the knowledge of the undrained shear strength and the initial shear modulus of the clay.  相似文献   

6.
The accurate measurement of modulus is not an issue specific to high modulus steels, but is still a challenge for the wider engineering and materials community. Inherently, the measurements should not offer significant problems, but results from a series of interlaboratory validation exercises and data on representative high modulus steels are included to illustrate some of the practical issues associated with the static and dynamic techniques. Dynamic methods probably offer the potential for the most accurate measurements due to the simple geometry and test set-up. Results show that a well set up test could be expected to give modulus values with an uncertainty of ±1–2%. Comparable levels can be achieved from the tensile test, but only through the use of a separate and dedicated test, where loading is carried out below the elastic limit, using averaging strain measurement, careful alignment and robust data analysis procedures.

La mesure précise du module d’élasticité n’est pas un problème spécifique aux aciers à module d’élasticité élevé, mais c’est quand même un défi pour la grande communauté d’ingénierie et des matériaux. Fondamentalement, les mesures ne devraient pas offrir de problèmes importants, mais on inclut les résultats d’une série d’exercices de validation entre laboratoires et les données d’aciers représentatifs à module d’élasticité élevé pour illustrer certains des problèmes pratiques associés aux techniques statiques et dynamiques. Il est probable que les méthodes dynamiques offrent le potentiel de mesures les plus précises grâce à la géométrie et au montage d’essai simples. Les résultats montrent qu’on peut s’attendre à ce qu’un essai bien monté donne des valeurs du module d’élasticité avec une incertitude de ±1–2%. On peut obtenir des niveaux comparables pour l’essai de traction, mais seulement au moyen de l’utilisation d’un essai séparé et dédié, où la mise sous contrainte est effectuée sous la limite d’élasticité, en utilisant la mesure moyenne de la déformation, un alignement diligent et des procédures robustes d’analyse de données.  相似文献   


7.
In this paper, experimental studies using a true triaxial apparatus and a bender element system, and numerical simulations based on the discrete element method (DEM) were used to investigate the stress- and fabric-induced shear-stiffness anisotropy in soils at small strains. Verified by experiments and DEM simulations, the shear modulus was found to be relatively independent of the out-of-plane stress component, which can be revealed by the indistinctive change in the contact normal distribution and the normal contact forces on that plane in the DEM simulations. Simulation and experimental results also demonstrated that the shear modulus is equally contributed by the two principal stress components on the associated shearing planes. Fabric-induced stiffness anisotropy, i.e., the highest Gxy or Ghh, can be explained by simulation findings in which more contact normals prefer to distribute along the horizontal direction. The experiments and simulations also reveal that the fabric-induced stiffness anisotropy increases with an increasing aspect ratio of the particles. The assumption of transversely isotropic fabric in soils is valid based on the DEM simulation results; however, this assumption is not completely supported by the experimental results.  相似文献   

8.
The time domain evaluation of the frequency-dependent dynamic stiffness was studied and some transform methods are being proposed. In this paper, the nonlinear response analysis method of the dynamic stiffness with both frequency and strain dependency was studied. First, the frequency-dependent complex stiffness was calculated at each strain level, and then they were transformed to the impulse response in the time domain. The characteristics of the complex stiffness and the impulse response of both two-layered soil and viscoelastic dampers were investigated. Then, the nonlinear time-history response analysis method considering both dependencies using the impulse response of each strain level was proposed. The earthquake response analysis of a structure on the two-layered soil was carried out as an example. The efficiency of the method was confirmed through these investigations.  相似文献   

9.
Fiber Bragg grating (FBG) sensors have attracted a considerable amount of interest for their superior characteristics. However, the FBG sensors made on bare fibers are easily damaged. For their safe use in engineering, the glass core of optical fibers is coated with softer low modulus protective coatings. A portion of the host material strain is absorbed by the protective coatings when the strain transfers from the host material to the fiber core, and hence only a segment of structural strain is sensed. By introducing the shear modulus of the host material, a novel analytical model is developed for evaluating the sensing strain of the embedded FBG sensors in composite structures based on the strain in a host material. The average strain transfer ratio is deduced to describe the percentage transferred to the optical fiber core from the host material. It is concluded that the shear modulus of the host material influences strain transmission, especially when it is much lower than the modulus of the fiber core. Then, the strain transfer ratio of an optical fiber sensor embedded in a multilayered structure is developed in a similar way. The factors that affect the efficiency of strain transfer on the optical fiber sensor are deduced and discussed in detail based on the theoretical analysis. Finally, the theoretical results are verified through laboratory experimentation with the FBG sensors.  相似文献   

10.
This paper addresses numerical simulation of deep penetration of full-flow penetrometers in strain-softening, rate-dependent, cohesive soil, and the observed phenomenon of periodic shear bands. The analysis was conducted using a large deformation finite element approach, modifying the simple elastic–perfectly plastic Tresca soil model to allow strain-softening, with strain-rate dependency being incorporated in order to avoid spurious mesh dependency. Parametric analyses were carried out varying the strain-softening parameters (hence the relative brittleness of the soil), the rigidity index of the soil, and the strain-rate parameter. Increased brittleness of the soil led to reduction in the penetration resistance, but also to increasingly significant oscillations in the resistance–penetration responses. The oscillation was found to result from periodic shear bands evolving cyclically ahead of the advancing cylindrical and spherical penetrometers. Analyses with different values of rigidity index confirmed further that the periodic shear bands were a real material phenomenon, rather than due to errors in numerical simulation. Similar phenomena have been observed for continuous flow problems in granular materials. However, rising strain-rate dependency tended to suppress the oscillations.  相似文献   

11.
Dynamic Properties of Chemically Stabilized Sulfate Rich Clay   总被引:2,自引:0,他引:2  
A series of resonant column tests was conducted on chemically stabilized specimens of sulfate-rich expansive clay from southeast Arlington, Tex. Specimens were tested for different stabilizer types, stabilizer dosages, compaction moisture contents, and confining pressures. Three chemical stabilization methods were used: sulfate resistant type V cement, low calcium class F fly ash, and lime mixed with polypropylene fibers. Results in the small-shear strain amplitude range (<0.0001%) were analyzed to assess the influence of compaction moisture content and confining pressure on the linear shear modulus Gmax and material damping Dmin of stabilized soil. Tests were also conducted at small- to mid-shear strain amplitude levels (0.0001–0.01%) to assess the threshold strain limit γth for each treatment method, and to study the effects of torsional shearing on the rate of degradation of normalized modulus G/Gmax of treated soil. A 10%-by-weight dosage of sulfate resistant type V cement was found to give the highest modulus and lowest damping when compacted at 95% of maximum dry unit weight γd-max on the wet side of Proctor optimum.  相似文献   

12.
A systematic reduction of Timoshenko beam theory to shear beam theory is presented and compared to a parallel reduction to Euler–Bernoulli theory. The agreement between Timoshenko and shear theories is seen to improve as the ratio of Young’s modulus to shear modulus increases, as the mode number increases, and as the beam becomes fatter, which are the opposite trends for agreement between Timoshenko and Euler–Bernoulli theories.  相似文献   

13.
The paper presents the results of an experimental investigation of fine particle migration from pore body to the pore throat and toward the contact between particles and its effect on skeleton stiffness of granular materials. We hypothesize that the suspended colloids in the pore fluid migrate and deposit on the contact surface between the skeleton-forming particles and change the magnitude of the soil stiffness. Three specimens were prepared using uniform spherical glass particles that were saturated with deionized water and kaolinite or silt-base slurries. The specimens were drained by evaporation which retained the fines in the soil while increasing the matric suction. Changes in soil dynamic stiffness were evaluated using piezoelectric transducers while the migration of fines and the changes of the properties of the pore fluid were monitored using synchrotron X-ray microcomputed tomography (SMCT) on identical specimens. The wave propagation experiments show that the stiffness of the tested specimens increased at different rates during the drying processes. These measurements were complemented with SMCT scanning analysis that shows an increase in mass density of the remaining slurry as the pore fluid concentrated near the particle contacts. The results indicate that the soil stiffness increase due to the alteration of the pore fluid at the particles’ contact and changes caused at the contact behavior itself. These results provide an insight about parameters that influence soil stiffness which may help in better predictions of stiffness changes in compacted soils during moisture changes.  相似文献   

14.
中碳钢相变行为对高温力学特性影响的研究   总被引:1,自引:0,他引:1  
余伟  陈银莉  陈雨来  唐荻 《钢铁》2008,43(8):81-0
 采用DT1000热膨胀仪和Gleeble1500热模拟试验机,对含钒和不含钒的两种中碳钢的相变行为以及在相变过程中屈服强度和弹性模量的变化规律进行了研究。结果表明:随温度降低及奥氏体向低温相转变百分数的增加,钢的屈服应力急剧提高。含钒钢因相变开始温度低,其屈服应力快速增加的温度较低。弹性模量在相变时产生剧烈变化,并在铁素体+珠光体转变过程中出现波峰和波谷。  相似文献   

15.
The work describes in situ measurements of crack induced permeability as a function of depth, (down to ~ 1.75?m), in clay soils at two field sites, using the gas flow technique described in an earlier study. The gas flow response to applied pressure was found to exhibit a significant nonlinearity at all depths indicating non-Darcian flow despite the fact that the flow was likely to be well within the laminar flow regime. Application of three-dimensional finite-element models to describe the gas flow revealed that the nonlinearity is likely to be an intrinsic behavior related to the soil-gas flow interaction. The Forchheimer compressible flow equation successfully simulated the behavior at all depths. The viscous and inertial permeability parameters obtained from this analysis showed a wide range of values which were closely correlated to the pore-water content of the soil medium, clearly showing the influence of ped swelling on the contraction of macrovoid channels in the structured clay soil.  相似文献   

16.
The interface boundary relations are derived in this study for the numerical analysis of one-dimensional consolidation in multilayered clay profiles. The finite difference solutions are formulated based on Mikasa’s consolidation equation with infinitesimal strains and constant consolidation parameters under the same fundamental assumptions and limitations of the classic Terzaghi equation. Numerical examples are presented for multilayer clay profiles under single and double drainage conditions that validate the predicted excess pore pressures, strains, settlements, and rates of consolidation using interface boundary relations in terms of infinitesimal strains that are equivalent to those expressed in terms of excess pore pressures.  相似文献   

17.
Despite great advancements in thin-film growth and deposition techniques, determination of the residual stress and Young’s modulus for thin films has continued to be a challenge. The bulge test is a potentially powerful tool for characterizing these mechanical properties but is underutilized because of its sensitivity to experimental error. The bulge test is highly sensitive to sample and test preparation, accuracy of the deflection measurement, accuracy in the measurement of film dimensions, and selection of the correct equation to be used for extraction of the Young’s modulus and residual stress. In this study, effort has been made to consolidate the findings from various reports in the literature, and a thorough error analysis has been conducted. A discussion on the experimental technique used to extract Poisson’s ratio from the bulge test is also presented. Finally, the technique is used to determine the residual stress and Young’s modulus of 3C-SiC thin films grown on silicon.  相似文献   

18.
For polymer matrix composites subjected to large strain rates, it is important to correctly characterize the nonlinear and strain-rate dependent response of polymers. Viscoplastic constitutive material models have been developed to account for the effects of hydrostatic effects and inelastic strains in polymer materials. The effective implementation of such viscoplastic models is important for development of composite models geared toward practical applications. Goldberg’s polymer model numerical implementation into a commercial finite-element code constitutes the main objective of this paper. Special attention is given to the use of effective algorithms for solving the model nonlinear rate dependent viscoplastic equations. Existent experimental data are used to verify the accuracy and robustness of the computational polymer model. A phenomenological fiber model and a simplified iso-strain mixture theory used to obtain the resultant stresses in the composite by averaging the stresses of the individual constituents are also defined. The validation of the simplified mixture theory for the composite model will be presented later on.  相似文献   

19.
Undrained Shear Strength of Pleistocene Clay in Osaka Bay   总被引:1,自引:0,他引:1  
This study presents the undrained shear characteristics of Holocene and Pleistocene clay samples from depths of 20–200 m under the seabed in Osaka Bay. Automated triaxial K0 consolidation tests and anisotropically consolidated-undrained triaxial compression and extension tests are conducted using the recompression method. The average undrained strength ratio (su/σv0′) is 0.33 (SD = 0.03) when the extension strength is defined as the peak strength or the strength at an axial strain of 15%, while su/σv0′ is 0.29 (SD = 0.04) when the extension strength is defined as the shear stress at the axial strain corresponding to the peak compression strength. Circular arc stability analyses are carried out with the modified Fellenius and Bishop methods for the design cross section of the seawall structure of the Kansai International Airport to study the effects of different definitions of shear strength. The seawall is founded on 19 m of soft Holocene clay and 10 m of Pleistocene sand overlying the Pleistocene clay. The stability analyses show that the factor of safety and depth of the critical circle (i.e., above versus below the sand layer) are sharply affected by both the value of su/σv0′ (0.33 versus 0.29) and the method of slices (Fellenius versus Bishop). The marginal stability calls for careful monitoring of construction with field instrumentation.  相似文献   

20.
The penetration resistance of a cylindrical T-bar penetrometer in soft clay is affected by features such as anisotropy, high strain rates, and gradual strain-softening during passage of the T-bar. In order to evaluate these effects, a detailed numerical study has been undertaken, comprising: (1) finite-element analysis; and (2) a strain path approach within the upper bound plasticity mechanism. These studies showed that the T-bar factor is relatively insensitive to the degree of strength anisotropy, provided the penetration resistance is normalized by the average shear strength. Strain rates were found to be six or seven orders of magnitude greater than typical laboratory testing rates, and about three orders of magnitude higher than in a standard vane test. However, the effect of high strain rates is partly compensated by remolding of the soil, where average strains of 400% are imposed on the soil. Charts are presented showing how the separate effects of high strain rates and partial softening may be combined to derive a T-bar factor for a given soil. The paper concludes with a discussion of the measurement of remolded shear strength using cyclic T-bar tests, and interpretation of the T-bar resistance in fully remolded soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号