首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Situ Measurement of Nonlinear Shear Modulus of Silty Soil   总被引:1,自引:0,他引:1  
A new field test method to evaluate in situ nonlinear shear modulus of soils was developed. The method utilizes a drilled shaft as a cylindrical, axisymmetric source for shear loading of soil at depth. The applicability of the test method was studied by conducting small-scale, prototype experiments at a “calibration” field site in Austin, Texas. Numerous conventional in situ and laboratory measurements were performed to characterize the soil at the field site. The “small-scale” nature of the tests involved using a 381?mm (15?in.) diameter, 3.7?m (12?ft) long drilled shaft. Experimental results from this field study provided an opportunity to compare laboratory and field measurements of the G?log?γ and G/Gmax?log?γ curves. This comparison was used to investigate the accuracy of common procedures relating field and laboratory modulus reduction curves. Nonlinear modulus measurements were performed at depths of 1.8?to?2.1?m (6?to?7?ft) in a silt (ML). The field G/Gmax?log?γ curve for this soil at low confining pressures are in general agreement with the laboratory curve from an intact specimen as well as empirical curves.  相似文献   

2.
Pore Pressure Generation of Silty Sands due to Induced Cyclic Shear Strains   总被引:2,自引:0,他引:2  
It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. Most previous research efforts have focused on clean sands, yet sand deposits with fines are more commonly found in nature. Previous laboratory liquefaction studies on the effect of fines on liquefaction susceptibility have not yet reached a consensus. This research presents an investigation on the effect of fines content on excess pore water pressure generation in sands and silty sands. Multiple series of strain-controlled cyclic direct simple shear tests were performed to directly measure the excess pore water pressure generation of sands and silty sands at different strain levels. The soil specimens were tested under three different categories: (1) at a constant relative density; (2) at a constant sand skeleton void ratio; and (3) at a constant overall void ratio. The findings from this study were used to develop insight into the behavior of silty sands under undrained cyclic loading conditions. In general, beneficial effects of the fines were observed in the form of a decrease in excess pore water pressure and an increase in the threshold strain. However, pore water pressure appears to increase when enough fines are present to create a sand skeleton void ratio greater than the maximum void ratio of the clean sand.  相似文献   

3.
The cyclic liquefaction resistance of intact medium dense specimens of sands and silts obtained from offshore platform sites was compared to that of specimens reconstituted to the same values of shear wave velocity. The shear wave velocity was measured using a new system that is comprised of torsional piezoelectric ceramic ring transducers mounted in a triaxial cell, a multiwave measuring device, and special watertight connectors. The relationship between cyclic resistance ratio and the number of cycles to liquefaction Nf of intact and reconstituted specimens was compared at the same values of consolidation pressure and shear wave velocity. There was good agreement between cyclic resistance ratios of intact and reconstituted specimens with similar values of shear wave velocity if liquefaction is defined as ? 6% peak-to-peak axial strain. The results of this study support the hypothesis that the cyclic liquefaction resistance of reconstituted specimens may be restored to in situ conditions when their shear wave velocity is restored to in situ values.  相似文献   

4.
This paper presents the results of the influence of frequency on the permanent deformation and degradation behavior of ballast during cyclic loading. The behavior of ballast under numerous cycles was investigated through a series of large-scale cyclic triaxial tests. The tests were conducted at frequencies ranging from 10–40 Hz, which is equivalent to a train traveling from 73 km/h to 291 km/h over standard gauge tracks in Australia. The results showed that permanent deformation and degradation of ballast increased with the frequency of loading and number of cycles. Much of breakage occurs during the initial cycle; however, there exists a frequency zone of 20?Hz ? f ? 30?Hz where cyclic densification takes place without much additional breakage. An empirical relationship among axial strain, frequency and number of cycles has been proposed based on the experimental data. In addition, discrete-element method (DEM) simulations were carried out using PFC2D on an assembly of irregular shaped particles. A novel approach was used to model a two-dimensional (2D) projection of real ballast particles. Clusters of bonded circular particles were used to model a 2D projection of angular ballast particles. Degradation of the bonds within a cluster was considered to represent particle breakage. The results of DEM simulations captured the ballast behavior under cyclic loading in accordance with the experimental observations. Moreover, the evolution of micromechanical parameters such as a distribution of the contact force and bond force developed during cyclic loading was presented to explain the mechanism of particle breakage. It has been revealed that particle breakage is mainly due to the tensile stress developed during cyclic loading and is located mainly in the direction of the movement of ballast particles.  相似文献   

5.
Mechanistic-empirical pavement design guide for flexible pavements as per the AASHTO design guide requires characterization of subgrade soils using the resilient modulus (MR) property. This property, however, does not fully account for the plastic or permanent strain or rutting of subgrade soils, which often distress the overlying pavements. Soils such as silts exhibit moderate to high resilient moduli properties but they still undergo large permanent deformations under repeated loading. This explains the fallacy in the current pavement material characterization practice. A comprehensive research study was performed to measure permanent deformation properties of subgrade soils by subjecting various soils under repeated cycles of deviatoric loads. This paper describes test procedure followed and results obtained on three soils including clay, silt, and sandy soils. The influence of compaction moisture content, confining pressure, and deviatoric stresses applied on the measured permanent deformations of all three soils are addressed. A four-parameter permanent strain model formulation as a function of stress states in soils and the number of loading cycles was used to model and analyze the present test results. The model constants of all three soils were first determined and these results were used to explain the effects of various soil properties on permanent deformations of soils. Validation studies were performed to address the adequacy of the formulated model to predict rutting or permanent strains in soils.  相似文献   

6.
A series of single-staged consolidated drained direct shear tests are carried out on recompacted completely decomposed granite (CDG) soil—a typical residual soil in Hong Kong, under different matric suctions and net normal stresses. Matric suction is controlled by applying air pressure in the pressure chamber and water pressure at the bottom of the high air-entry ceramic disk. The experimental results show that the contribution of suction to shear strength is significant. Shear strength of CDG soil increases with the increase of matric suction. Net normal stress has a remarkable influence on the shear strength of unsaturated CDG soil. The increase in shear strength due to an increase in matric suction (suction envelope) is observed as nonlinear i.e., ?b value varies with matric suction. No soil dilatancy is observed for zero matric suction (saturated case) but as the suction value is increased, higher soil dilatancy is obvious in lower net normal stresses. The rate of increase of soil dilatancy is greater in lower suction range than in higher suction range. The experimental shear strength data match closely with the shear strength predicted by existing shear strength model considering the soil-dilation effect.  相似文献   

7.
In Situ Pore-Pressure Generation Behavior of Liquefiable Sand   总被引:2,自引:0,他引:2  
To overcome current limitations in predicting in situ pore-pressure generation, a new field testing technique is used to measure directly the coupled, local response between the induced shear strains and the generated excess pore pressure. The pore-pressure generation characteristics from two in situ liquefaction tests performed on field reconstituted specimens are presented, including the pore- pressure generation patterns at various strain levels, the observed stages of pore-pressure generation, and pore-pressure generation curves. Comparisons of the in situ pore-pressure generation curves with data in the literature and from laboratory strain-controlled, cyclic direct simple shear tests support the in situ testing results. In addition, the effects of effective confining stress on threshold shear strain and pore- pressure generation curves are discussed. Comparisons of the rate of pore-pressure generation among the in situ tests, laboratory strain-controlled tests, and a model based on stress-controlled tests reveal that in situ pore pressures generated in reconstituted soil specimens during dynamic loading develop more similarly to those from cyclic strain-controlled laboratory testing. This observation implies that the evaluation of induced strains rather than induced shear stresses may be more appropriate for the simulation of pore-pressure generation.  相似文献   

8.
This paper presents the results of a systematic well designed experimental investigation carried out to study the engineering properties of the soft Bangkok clay heated up to 90°C from room temperature (25°C). Details of modified oedometer and triaxial test apparatus that can handle temperatures up to 100°C are also presented. In the range of temperatures investigated, soft Bangkok clay exhibited temperature induced volume changes that depend mainly on the stress history, reduction in the conventional elastic zone, stiffening, and increased hydraulic permeability with increasing temperature as well as apparent overconsolidation state after subjecting the normally consolidated specimen to heating/cooling cycle. The results of this study provide additional data that can enhance the understanding of the thermohydromechanical behavior concepts of saturated clays.  相似文献   

9.
The results of drained triaxial tests on fiber reinforced and nonreinforced sand (Osorio sand) specimens are presented in this work, considering effective stresses varying from 20 to 680?kPa and a variety of stress paths. The tests on nonreinforced samples yielded effective strength envelopes that were approximately linear and defined by a friction angle of 32.5° for the Osorio sand, with a cohesion intercept of zero. The failure envelope for sand when reinforced with fibers was distinctly nonlinear, with a well-defined kink point, so that it could be approximated by a bilinear envelope. The failure envelope of the fiber-reinforced sand was found to be independent of the stress path followed by the triaxial tests. The strength parameters for the lower-pressure part of the failure envelope, where failure is governed by both fiber stretching and slippage, were, respectively, a cohesion intercept of about 15?kPa and friction angle of 48.6?deg. The higher-pressure part of the failure envelope, governed by tensile yielding or stretching of the fibers, had a cohesion intercept of 124?kPa, and friction angle of 34.6?deg. No fiber breakage was measured and only fiber extension was observed. It is, therefore, believed that the fibers did not break because they are highly extensible, with a fiber strain at failure of 80%, and the necessary strain to cause fiber breakage was not reached under triaxial conditions at these stress and strain levels.  相似文献   

10.
One promising means of increasing the capacity of existing shear-deficient beams is to strengthen the structure using external prestressed carbon fiber reinforced polymer (CFRP) straps. In this system, layers of CFRP tape are wrapped around a beam to form a strap that acts like a discrete unbonded vertical prestressing tendon. Experiments were undertaken to investigate the influence of the strap spacing, the strap stiffness, the initial strap prestress level and/or any preexisting damage on the strengthened behavior, and mode of failure. An unstrengthened control beam was tested and failed in shear. In contrast, all of the strengthened beams showed a significant increase in their ultimate load capacity with several of the strengthened beams failing in flexure. A number of different failure modes were noted and initial guidelines on the design parameters that influence the propensity for a particular failure mode were developed.  相似文献   

11.
The nonhomogeneous behavior of structured soils during triaxial tests has been studied using a finite element model based on the Structured Cam Clay constitutive model with Biot-type consolidation. The effect of inhomogeneities caused by the end restraint is studied by simulating drained triaxial tests for samples with a height to diameter ratio of 2. It was discovered that with the increase in degree of soil structure with respect to the same soil at the reconstituted state, the inhomogeineities caused by the end restraint will increase. By loading the sample at different strain rates and assuming different hydraulic boundary conditions, inhomogeneities caused by partial drainage were investigated. It was found that if drainage is allowed from all faces of the specimen, fully drained tests can be carried out at strain rates about ten times higher than those required when the drainage is allowed only in the vertical direction at the top and bottom of the specimen, confirming the findings of previous studies. Both end restraint and partial drainage can cause bulging of the triaxial specimen around mid-height. Inhomogeneities due to partial drainage influence the stress–strain behavior during destructuring, a characteristic feature of a structured soil. With an increase in the strain rate, the change in voids ratio during destructuration reduces, but, in contrast, the mean effective stress at which destructuration commences was found to increase. It is shown that the stress–strain behavior of the soil calculated for a triaxial specimen with inhomogeneities, based on global measurements of the triaxial response, does not represent the true constitutive behavior of the soil inside the test specimen. For most soils analyzed, the deviatoric stress based on the global measurements is about 25% less than that for the soil inside the test specimen, when the applied axial strain is about 30%. Therefore it can be concluded that the conventional global measurements of the sample response may not accurately reflect the true stress–strain behavior of a structured soil. This finding has major implications for the interpretation of laboratory triaxial tests on structured soils.  相似文献   

12.
In the present note, the susceptibility to necking of a subsurface barrier installed by the vibrating beam method in fine-grained soils is investigated by physical model tests. Two soils are investigated, a clayey soil and a silty soil. The model soil is prepared by moist tamping. The recipe of slurry in the model tests is widely used in the foundation engineering industry. The dynamic loading exerted by the vibration of the adjacent panel is simulated by a shake table. The test results show that soil plasticity and water content are the major influence factors on the susceptibility to necking. The plasticity index can be used as an indicator for the susceptibility to necking of subsurface barrier installed by the vibrating beam method in fine-grained soils. Other influence factors on necking are also investigated and their implications for practice are discussed.  相似文献   

13.
The paper reports laboratory investigations carried out on a tropical soil profile to study its compressibility, strength, critical state and limit state conditions, and their variation with depth. The soil profile comprises a reddish lateritic layer (horizon B) underlain by a saprolitic soil (horizon C) from which a number of block samples were taken. A series of isotropic and anisotropic compression tests, and drained and undrained triaxial tests, were conducted on specimens sampled at depths between 1.0 and 7.0 m, and also in the exposed saprolitic soil. Special triaxial tests, with the pore pressure increased to induce failure, were performed to investigate the failure at low stress levels. On this basis a tensile cutoff on the failure envelope was defined. In order to assess the influence of the natural soil structure, drained and undrained triaxial tests were carried out on compacted samples obtained from depths of 1.0 and 5.0 m. Higher strength parameters were measured for the horizon C soil, which is consistent with its lower clay content. A nonlinearity in the critical state line in q:p′ stress space was identified, but linear regression was used to obtain critical state parameters. The limit state curves for soils from horizon B are centered on the hydrostatic axis, but limit state curves for horizon C suggested anisotropic behavior.  相似文献   

14.
Diffusion coefficients and retardation factors of two metal cations (Cd2+ and Pb2+) were measured for a compacted Brazilian saprolitic soil derived from gneiss, aiming to assess its geoenvironmental performance as a liner for waste disposal sites. This soil occurs extensively all over the country in very thick layers, but has not been used in liners because of its hydraulic conductivity, higher than 10?9?m/s when compacted at optimum water content of standard Proctor energy, but which can be reduced by means of appropriate compaction techniques or additives. Batch, column, and diffusion tests were carried out with monospecies synthetic solutions at pH 1, 3, and 5.5. Measured diffusion coefficients varied between 0.5 and 4×10?10?m2/s. Retardation factors show that cadmium, a very mobile cation, is not adsorbed at pH 1 but is significantly retained at pH 3 and pH 5.5, whereas lead is retained at all tested pH values though slightly at pH 1. Estimated retardation factors from batch tests were 1.3–2.3 times those resulting from column tests and at its highest when obtained by diffusion tests; whereas batch tests allow a more complete exposure of the soil grains to the solution, time-dependent nonspecific adsorption may take longer to occur. The importance of contact time was observed and should be considered in further investigations. Its significant retention of metals suggests a promising utilization of this soil as a bottom liner for wastes landfills.  相似文献   

15.
This paper presents the results of a series of plain-strain model tests carried out on both clean sand and oil-contaminated sand loaded with a rigid strip footing. The objectives of this study are to determine the influence of oil-contaminated sand on the bearing capacity characteristics and the settlement of the footing. Contaminated sand layers were prepared by mixing the sand with an oil content of 0–5% with respect to dry soil to match the field conditions. The investigations are carried out by varying the depth and the length of the contaminated sand layer and the type of oil contamination. A plain-strain elastoplastic theoretical model with an interface gap element between footing and the soil is carried out to verify the test results of the model. It is shown that the load-settlement behavior and ultimate bearing capacity of the footing can be drastically reduced by oil contamination. The bearing capacity is decreased and the settlement of the footing is increased with increasing the depth and the length of the contaminated sand layer. The agreement between observed and computed results is found to be reasonably good in terms of load-settlement behavior and effect of oil contamination on the bearing capacity ratio. A comparison between the model results and the prototype scale (B = 1.0?m) results are also studied.  相似文献   

16.
Glass fiber reinforced gypsum (GFRG) walls and their associated building system are the new building product and building system that have been developed in the Australian building industry in the last decade. GFRG walls are factory made glass-fiber reinforced gypsum hollow walling panels with/without in situ reinforced concrete filling inside the cavities. GFRG can be used as various structural elements, such as walls and slabs. GFRG, in its short life, without extensive product development and comprehensive structural design guidelines, has been used as the principal wall construction material in more than 3,000 dwellings across Australia. As GFRG walls find more and more applications and interests in the building industry in Australia as well as in other countries, comprehensive structural design guidelines for GFRG walls and their building system have become necessary. Comprehensive experimental testing and theoretical studies started in 2002 as an international research and development program to develop structural design guidelines for GFRG walls. The axial and shear tests are reported in this paper.  相似文献   

17.
This paper presents the results of a laboratory investigation whose purpose was to evaluate the effects of compaction on the erodibility of cohesionless soils. By means of a recently developed flume experiment, sediment erosion rates and incipient motion, as a function of shear stress, average velocity, and dry density, have been determined for three compacted sand and gravel mixtures. A preliminary comparison of the incipient motion values shows that granular soils compacted at the Proctor optimum have a higher resistance to free surface flow erosion than those compacted at lower and higher densities. This leads one to infer that the Proctor optimum, generally used as a standard for construction, might also be an optimum for hydraulic resistance and stability. Additional comparison of the experimental data with two commonly used incipient motion criteria also suggests that Yang’s criterion is a better predictor of soil detachment than the Shields-Yalin criterion.  相似文献   

18.
Experimental Study of Wellbore Instability in Clays   总被引:1,自引:0,他引:1  
This paper presents the results of an extensive program of laboratory model wellbore tests that have been performed to study wellbore instability in saturated clays. The tests were conducted on resedimented Boston blue clay (RBBC) anisotropically consolidated to vertical effective stresses up to 10?MPa by using two custom-built thick-walled cylinder (TWC) devices with outer diameters Do = 7.6 and 15.2?cm. The experimental program investigated the effects of specimen geometry, mode of loading, strain rate, consolidation stress level, and overconsolidation ratio (OCR) on deformations of the model wellbore measured during undrained shearing. Results indicate that for normally consolidated clays most of the change in cavity pressure occurs at volumetric strains less than 5% after which the borehole becomes unstable. Increases in outer diameter and strain rate led to a reduction in the minimum borehole pressure. Stress-strain properties were interpreted by using an analysis procedure originally developed for undrained plane strain expansion of hollow cylinders. The backfigured undrained strength ratios from these analyses for normally consolidated specimens range from su/σvc′ = 0.19–0.22. Overconsolidation greatly improves the stability of the borehole, and interpreted undrained strength ratios from the TWC tests are consistent with well-known power law functions previously developed for elemental shear tests.  相似文献   

19.
In this paper, the effects of penetration rate on cone resistance in saturated clayey soils are investigated. Shear strength rate effects in clayey soils are related to two physical processes: the increase of shear strength with increasing rate of loading and the increase of shear strength as the process transitions from undrained to drained. Special focus is placed on this second effect. Cone penetration tests were performed at various penetration rates both in the field and in a calibration chamber, and the resulting data were analyzed. The field cone penetration tests were performed at two test sites with fairly homogeneous clayey silt and silty clay layers located below the groundwater table. Additionally, tests with both cone and flat-tip penetrometers in sand-clay mixtures were performed in a calibration chamber to investigate the change in drainage conditions from undrained to partially drained and from partially drained to fully drained. A series of flexible-wall permeameter tests were conducted in the laboratory for various clayey sand mixtures prepared at various mixing ratios in order to obtain values of the coefficient of consolidation, which is required to estimate the penetration rates below which penetration is drained and above which penetration is undrained. A correlation between cone resistance and drainage conditions was established based on the results of the calibration chamber and field penetration tests.  相似文献   

20.
To evaluate the uplift behavior of anchors installed by the blade underreaming system, a numerical model for anchors in silty sand has been developed in this study and the calculated results are compared to the results of full scale anchor pullout tests. Although the blade-underreamed anchor tends to be irregular in shape due to possible collapse of the borehole, the excavated anchor showed an underreamed body of approximately multiple-stepped shape. Despite the difference in shape, the numerical results indicate that the difference between the load–displacement curve of the multiple-stepped anchor and that of the conical shaped anchor is small. In addition, the anchorage behavior of conical shaped anchors calculated from this numerical model was in good agreement with those of full scale anchor tests. No sign of progressive soil yielding along the underreamed body was found from the numerical analysis. So, the pull-out capacity of this underreamed anchor increases more than linearly with the length of the underream. Since only a small underream angle is needed to generate a substantial increase in anchor pull-out resistance, the ultimate pull-out capacity of the blade-underreamed anchor is found to be higher than that of straight shaft anchor in silty sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号