首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immediate and long-term settlement checks are an integral part of foundation design. Therefore, reasonably accurate estimates of the immediate settlement of shallow foundations bearing on clay are necessary, particularly for highly plastic clays or organic soils, for which the immediate settlement may be significant. This immediate settlement is due entirely to the distortion of the clay underneath the shallow foundations because, in the short term, there is no opportunity for change in the clay volume. Since soil stress-strain response is nonlinear even at small strains, design procedures based on linear elasticity cannot accurately predict soil deformations. Hence, an immediate settlement analysis that takes soil nonlinearity into account is needed. In this paper, finite-element analysis is used to develop design charts that can be used to estimate the immediate settlement of axially loaded square, rectangular, and strip footings bearing on clay. The clay is modeled with a simple nonlinear constitutive relationship. A design example is included to illustrate how the proposed procedure can be readily applied in practice with the knowledge of the undrained shear strength and the initial shear modulus of the clay.  相似文献   

2.
Resistance Factors for Use in Shallow Foundation LRFD   总被引:1,自引:0,他引:1  
In shallow foundation design, the key improvements offered by LRFD over the traditional working stress design (WSD) are the ability to provide a more consistent level of reliability between different designs and the possibility of accounting for load and resistance uncertainties separately. In the development of LRFD, a framework for the objective, logical assessment of resistance factors is needed. Additionally, in order for LRFD to fulfill its promise for designs with more consistent reliability, the methods used to execute a design must be consistent with the methods assumed in the development of the LRFD factors. In this paper, a methodology for the estimation of soil parameters for use in design equations is proposed that should allow for more statistical consistency in design inputs than is possible in traditional methods. Resistance factors for ultimate bearing capacity are computed using reliability analysis for shallow foundations both in sand and in clay, with input parameters obtained from both the cone penetration test and the standard penetration test, and for both ASCE-7 2000 and AASHTO 1998 load factors. Resistance factor values are dependent upon the values of load factors used. Thus, a method to adjust the resistance factors to account for code-specified load factors is also presented.  相似文献   

3.
A study of the assumptions involved in the ultimate bearing capacity equation indicates the shortcomings of that equation and load test data confirm these shortcomings. A new approach using a normalized load settlement curve is proposed to alleviate these shortcomings and to obtain the complete load settlement curve for a footing in sand. The normalization consists of plotting the mean footing pressure divided by a measure of the soil strength within the depth of influence of the footing versus the settlement divided by the footing width. It is shown that the normalized load settlement curve for a footing is independent of footing size and embedment. It is proposed to obtain the normalized curve point-by-point from a soil test. Because the deformation of the soil observed under full-scale footings during loading indicates a barreling effect similar to the soil deformation around a pressuremeter probe, the preboring pressuremeter curve is used to obtain the footing curve. The new method consists of transforming the preboring pressuremeter curve point-by-point into the footing load settlement curve. Load tests and numerical simulations are used to propose a method for a rectangular footing near a slope subjected to an eccentric and inclined load. The new method gives the complete load settlement curve for the footing and alleviates the problems identified with the bearing capacity equation.  相似文献   

4.
The cone penetration test (CPT) method is gaining popularity in the United States as one of the premier subsurface exploration techniques. The writers previously monitored settlement behavior of spread footing foundations at five highway bridge construction sites in Ohio and evaluated the standard penetration test-based settlement prediction methods in light of the field performance data. The authors recently conducted CPT sounding at these bridge sites. In this paper, settlement behavior of five spread footings resting on cohesionless soils at two sites were predicted with the CPT-based settlement prediction methods proposed by Amar, DeBeer, Meyerhof, and Schmertmann. The results showed that the prediction methods by Schmertmann and DeBeer were both conservative but reasonably reliable in predicting the settlement of shallow foundations observed in the field.  相似文献   

5.
Foundation impedance ordinates are identified from forced vibration tests conducted on a large-scale model test structure in Garner Valley, California. The structure is a steel moment frame with removable cross-bracing, a reinforced concrete roof, and a nonembedded square slab resting on Holocene silty sands. Low-amplitude vibration is applied across the frequency range of 5–15?Hz with a uniaxial shaker mounted on the roof slab. We describe procedures for calculating frequency-dependent foundation stiffness and damping for horizontal translational and rotational vibration modes. We apply the procedures to test data obtained with the structure in its braced and unbraced configurations. Experimental stiffness ordinates exhibit negligible frequency dependence in translation but significant reductions with frequency in rotation. Damping increases strongly with frequency, is stronger in translation than in rocking, and demonstrates contributions from both radiation and hysteretic sources. The impedance ordinates are generally consistent with numerical models for a surface foundation on a half-space, providing that soil moduli are modestly increased from free-field values to account for structural weight, and hysteretic soil damping is considered.  相似文献   

6.
The effectiveness of structural fuse mechanisms used to improve the performance of buildings during seismic loading depends on their capacity, ductility, energy dissipation, isolation, and self-centering characteristics. Although rocking shallow footings could also be designed to possess many of these desirable characteristics, current civil engineering practice often avoids nonlinear behavior of soil in design, due to the lack of confidence and knowledge about cyclic rocking. Several centrifuge experiments were conducted to study the rocking behavior of shallow footings, supported by sand and clay soil stratums, during slow lateral cyclic loading and dynamic shaking. The ratio of the footing area to the footing contact area required to support the applied vertical loads (A/Ac), related to the factor of safety with respect to vertical loading, is correlated with moment capacity, energy dissipation, and permanent settlement measured in centrifuge and 1 g model tests. Results show that a footing with large A/Ac ratio (about 10) possesses a moment capacity that is insensitive to soil properties, does not suffer large permanent settlements, has a self-centering characteristic associated with uplift and gap closure, and dissipates seismic energy that corresponds to about 20% damping ratio. Thus, there is promise to use rocking footings in place of, or in combination with, structural base isolation and energy dissipation devices to improve the performance of the structure during seismic loading.  相似文献   

7.
This paper addresses the interpretation of plate load tests bearing on double-layered systems formed by an artificially cemented compacted top soil layer (three different top layers have been studied) overlaying a compressible residual soil stratum. Applied pressure-settlement behavior is observed for tests carried out using circular steel plates ranging from 0.30 to 0.60 m diameter on top of 0.15 to 0.60-m-thick artificially cemented layers. The paper also stresses the need to express test results in terms of normalized pressure and settlement—i.e., as pressure normalized by pressure at 3% settlement (p/p3%) versus settlement-to-diameter (δ/D) ratio. In the range of H/D (where H = thickness of the treated layer and D = diameter of the foundation) studied, up to 2.0, the final failure modes observed in the field tests always involved punching through the top layer. In addition, the progressive failure processes in the compacted top layer always initiated by tensile fissures in the bottom of the layer. However, depending on the H/D ratio, the tensile cracking started in different positions. The footing bearing capacity analytical solution for layered cohesive-frictional soils appears to be quite adequate up to a H/D value of about 1.0. Finally, for a given project, combining Vésic’s solution with results from one plate-loading test, it is possible (knowing of the demonstrated normalization of p/p3%-δ/D, where the pressure-relative settlement curves for different H/D ratios produce a single curve for all values of H/D) to estimate the pressure-settlement curves for footings of different sizes on different thicknesses of a cemented upper layer.  相似文献   

8.
The results of 167 full-scale field load tests were used to examine several issues related to the load-displacement behavior of footings in cohesionless soils under axial compression loading, including (1) method to interpret the “failure load” from the load-settlement curves; (2) correlations among interpreted loads and settlements; and (3) generalized load-settlement behavior. The L1-L2 method was found to be more appropriate than the “tangent intersection” and “10% of the footing width” methods for interpreting the failure load. The interpreted loads and displacements indicate that footing load-settlement behavior is less elastic and more nonlinear than that of drilled foundations. The results show that the footing behavior will be beyond the elastic limit for designs where a traditional factor of safety between 2 and 3 is used. A normalized curve was developed by approximating the load-settlement curve for each load test in the database by hyperbolic fitting, and the uncertainty in this curve was quantified. This normalized curve can be used in footing design that considers capacity and settlement together. Where possible or warranted, the normalized curve can be subdivided as a function of initial soil modulus.  相似文献   

9.
The Cape Hatteras Lighthouse is the tallest brick structure of its kind in the United States. The national icon was closed to visitors after several pieces of the cast iron stairs, original to the structure, dislodged and fell inside the lighthouse. This finding led to the investigative efforts outlined in this paper, on the load carrying capacity of the stairs. This article summarizes the engineering effort in the condition assessment of the stairs, the review of visitor statistical data for likely load exposures during peak times, and the development of a unique load test program for the stairs of the historic structure. The load testing program was unique because of the physical constraints of the lighthouse shaft as well as the dimensions of the stair treads. In addition, the engineering team had the added objective of protecting the integrity of the national icon and performing the load test without exposing the historic stairs to an unnecessary risk of failure.  相似文献   

10.
The American Association of State Highway and Transportation Officials (AASHTO) specifications provide formulas for determining live load distribution factors for bridges. For load distribution factors to be accurate, the behavior of the bridge must be understood. While the behavior of right-angle bridges and bridges with limited skews is relatively well understood, that of highly skewed bridges is not. This paper presents a study aimed at developing a better understanding of the transverse load distribution for highly skewed slab-on-steel girder bridges. The study involved both a diagnostic field test of a recently constructed bridge and an extensive numerical analysis. The bridge tested and analyzed is a two-span, continuous, slab-on-steel composite highway bridge with a skew angle of 60°. The bridge behavior is defined based on the field test data. Finite-element analyses of the bridge were conducted to investigate the influence of model mesh, transverse stiffness, diaphragms, and modeling of the supports. The resulting test and analytical results are compared with AASHTO’s Load and Resistance Factor Design formulas for live load distribution to assess the accuracy of the current empirical formulas.  相似文献   

11.
An extensive database of full-scale field load tests was used to examine the bearing capacity for footings in cohesionless soils. Each load test curve was evaluated consistently to determine the interpreted failure load (i.e., bearing capacity) using the L1-L2 method. This test value then was compared with the theoretical bearing capacity, computed primarily using the basic Vesi? model. The comparisons show that, for footing widths B>1?m, the field results agree very well with the Vesi? predictions. However, for B<1?m, the results indicated a relationship between B and the predicted-to-measured bearing capacity ratio. Accordingly, a simple modification was made to the bearing capacity equation, and the resulting predictions are very good.  相似文献   

12.
Pile jacking is a piling technique that provides a noise- and vibration-free environment in the construction site. To improve termination criteria for pile jacking and to better understand the behavior of jacked piles, two steel H piles were instrumented, installed at a weathered soil site, and load tested. A set of termination criteria was applied to the test piles, which includes a minimum blow count from the standard penetration test, a specified final jacking force, a minimum of four loading cycles at the final jack force, and a specified maximum rate of pile settlement at the final jacking force. The two test piles passed all required acceptance criteria. Punching shear failure occurred at the failure load for both piles and the shaft resistance consisted of approximately 80% of the pile capacity. Based on the results of field tests in Hong Kong and Guangdong and several centrifuge tests, a relation between the ratio of the pile capacity Pult to the final jacking force PJ and the pile slenderness ratio is established. The Pult/PJ ratio is larger than 1.0 for long piles but may be smaller than 1.0 for short piles. A regression equation is established to determine the final jacking force, which is suggested as a termination criterion for jacked piles. The final jacking force can be smaller than 2.5 times the design load for very long piles, but should be larger than 2.5 times the design load for piles shorter than 37 times the pile diameter.  相似文献   

13.
A probabilistic method is presented to estimate the differential settlements of footings on cohesionless soils, considering the uncertainties in both the load and capacity sides of the design equation. A random field approach is employed to characterize the inherent soil variability. This method is first compared to typical limit values from the literature to denote critical combinations of design parameters that can lead to exceedance of tolerable differential settlements. Then, reliability-based design equations are developed for the serviceability limit state (SLS) design of footings on cohesionless soils. The key parameters controlling the SLS are the allowable angular distortion, site variability, and footing spacing. The results are given in a straightforward design format and indicate that currently suggested deformation factors (resistance factors for SLS) equal to 1.0 are likely to be unconservative for most design situations.  相似文献   

14.
A reliability-based analysis of a strip foundation subjected to a central vertical load is presented. Both the ultimate and the serviceability limit states are considered. Two deterministic models based on numerical simulations are used. The first one computes the ultimate bearing capacity of the foundation and the second one calculates the footing displacement due to an applied load. The response surface methodology is utilized for the assessment of the Hasofer–Lind reliability indexes. Only the soil shear strength parameters are considered as random variables while studying the ultimate limit state. Also, the randomness of only the soil elastic properties is taken into account in the serviceability limit state. The assumption of uncorrelated variables was found to be conservative in comparison to the one of negatively correlated variables. The failure probability of the ultimate limit state was highly influenced by the variability of the angle of internal friction. However, for the serviceability limit state, the accurate determination of the uncertainties of the Young's modulus was found to be very important in obtaining reliable probabilistic results. Finally, the computation of the system failure probability involving both ultimate and serviceability limit states was presented and discussed.  相似文献   

15.
The paper discusses finite element models for predicting the elastic settlement of a strip footing on a variable soil. The paper then goes on to compare results obtained in a probabilistic settlement analysis using a stochastic finite element method based on first order second moment approximations, with the random finite element method based on generation of random fields combined with Monte Carlo simulations. The paper highlights the deficiencies of probabilistic methods that are unable to properly account for spatial correlation.  相似文献   

16.
During the 1999 Chi-Chi Earthquake (Mw = 7.6), significant incidents of ground failure occurred in Wufeng, Taiwan, which experienced peak accelerations ~ 0.7?g. This paper describes the results of field investigations and analyses of a small region within Wufeng along an E–W trending line 350?m long. The east end of the line has single-story structures for which there was no evidence of ground failure. The west end of the line had three to six-story reinforced concrete structures that underwent differential settlement and foundation bearing failures. No ground failure was observed in the free field. Surficial soils consist of low-plasticity silty clays that extend to 8–12?m depth in the damaged area (west side), and 3–10?m depth in the undamaged area (east side). A significant fraction of the foundation soils at the site are liquefaction susceptible based on several recently proposed criteria, but the site performance cannot be explained by analysis in existing liquefaction frameworks. Accordingly, an alternative approach is used that accounts for the clayey nature of the foundation soils. Field and laboratory tests are used to evaluate the monotonic and cyclic shear resistance of the soil, which is compared to the cyclic demand placed on the soil by ground response and soil–structure interaction. Results of the analysis indicate a potential for cyclic softening and associated strength loss in foundation soils below the six-story buildings, which contributes to bearing capacity failures at the edges of the foundation. Similar analyses indicate high factors of safety in foundation soils below one-story buildings as well in the free field, which is consistent with the observed field performance.  相似文献   

17.
The design of shallow foundations is often considered in semiempirical methodologies that are based on linear and nonlinear models of behavior, mainly for settlement prediction purposes. In this paper, the applicability of such criteria is discussed, by analyzing the results obtained at an experimental site on a fairly homogeneous saprolitic soil derived from granite. This included a full-scale load test on a circular concrete footing together with in situ and laboratory tests. The information obtained in terms of strength and stiffness was integrated with the aim of refining some of the approaches based on the theory of elasticity. Emphasis was especially given to semiempirical methodologies based on results of standard penetration tests, cone penetration tests, plate loading tests, and triaxial tests on high-quality samples with the results from local instrumentation. Some of the well-established methods were tested and some parametrical and methodological adaptations are suggested that better fit the observed behavior.  相似文献   

18.
Neural network (NN) models for time series forecasting were initially used in economic fields. In this paper, NN models for time series forecasting are introduced for use in forecasting the settlement of chimney foundations. The data sets used in the NN models were measured in the field. Seven models with different input series are developed to determine the optimal structure of the network. In evaluating the network performance, the network model that uses the previous nine months’ settlement values as input is selected as the optimal model. The analysis results demonstrate that the settlement values predicted by the optimal model are in good agreement with the field measurements. In addition, as the number of data points in the input series increases, the NN performance clearly improves, and this improvement stops after the input series has increased to a certain extent. This demonstrates that the time-series-based NN model can also be successfully applied to predict foundation settlement.  相似文献   

19.
Most of the existing methods for estimating settlements of footings in sand have been developed for either isolated square footings or for strip footings. The literature contains limited information on settlement analysis of rectangular footings, and, as a result, there is no way to accurately account for the effect of the footing length-to-width ratio on settlement. Additionally, no practical method exists for considering the interaction between neighboring footings in settlement estimates. In this paper, we use Schmertmann’s framework to propose a method of settlement estimation that takes full account of both the footing length-to-width ratio and the proximity of neighboring footings. Three-dimensional nonlinear finite element analyses were performed for various multiple footing configurations. Plate load tests were performed in sands using both a single plate and two plates separated by various distances. The numerical and experimental results indicate that the shape of the footing (expressed through its length-to-width ratio) and the proximity of neighboring footings affect two parameters of the strain influence diagram (which is the basis for the settlement estimation method): the depth to the peak influence factor Izp and the depth of the strain influence zone. We propose new strain influence diagrams for estimation of settlement under these more general conditions.  相似文献   

20.
Predicting Settlement of Shallow Foundations using Neural Networks   总被引:4,自引:0,他引:4  
Over the years, many methods have been developed to predict the settlement of shallow foundations on cohesionless soils. However, methods for making such predictions with the required degree of accuracy and consistency have not yet been developed. Accurate prediction of settlement is essential since settlement, rather than bearing capacity, generally controls foundation design. In this paper, artificial neural networks (ANNs) are used in an attempt to obtain more accurate settlement prediction. A large database of actual measured settlements is used to develop and verify the ANN model. The predicted settlements found by utilizing ANNs are compared with the values predicted by three of the most commonly used traditional methods. The results indicate that ANNs are a useful technique for predicting the settlement of shallow foundations on cohesionless soils, as they outperform the traditional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号