首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tensile Strength of Unsaturated Sand   总被引:4,自引:0,他引:4  
A theory that accurately describes tensile strength of wet sand is presented. A closed form expression for tensile strength unifies tensile strength characteristics in all three water retention regimes: pendular, funicular, and capillary. Tensile strength characteristically increases as soil water content increases in the pendular regime, reaches a peak in the funicular regime, and reduces with a continuing water content increase in the capillary regime. Three parameters are employed in the theory: internal friction angle (at low normal stress) ?t, the inverse value of the air-entry pressure α, and the pore size spectrum parameter n. The magnitude of peak tensile strength is dominantly controlled by the α parameter. The saturation at which peak tensile strength occurs only depends on the pore size spectrum parameter n. The closed form expression accords well with experimental water retention and tensile strength data for different sands.  相似文献   

2.
The analysis of steep slope and cliff stability in variably cemented sands poses a significant practical challenge as routine analyses tend to underestimate the actually observed stability of existing slopes. The presented research evaluates how the degree of cementation controls the evolution of steep sand slopes and shows that the detailed slope geometry is important in determining the characteristics of the failure mode, which in turn, guide the selection of an appropriate stability analysis method. Detailed slope-profile cross sections derived from terrestrial lidar surveying of otherwise inaccessible cemented sand cliffs are used to investigate failure modes in weakly cemented [unconfined compressive strength (UCS)<30?kPa] and moderately cemented (30相似文献   

3.
Three-dimensional compressibility tests performed on unsaturated kaolinite clay subjected to drying showed that the volume change is a function of the equivalent effective stress (EES). The EES in the clay at different water contents was measured by performing direct tensile tests. When the clay has high water content (saturated funicular state), its volume decreases notably as the water content is reduced, i.e., the equivalent effective stress is increased. If the clay has a water content in an intermediate interval (complete pendular state), the volume is almost constant because the equivalent effective stress is almost constant. For the interval of low water contents (partial pendular state), the volume of the clay increases as the water content is reduced. This occurs because the equivalent effective stress is reduced when the moisture content in the clay is reduced, and contrasts with the saturated funicular state. The minimum volume in the clay was reached when the maximum equivalent effective stress was developed. A conceptual framework explains the influence of the different states of water distribution to the EES.  相似文献   

4.
An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials.  相似文献   

5.
Unsaturated Particulate Materials—Particle-Level Studies   总被引:3,自引:0,他引:3  
Analyses and experiments are performed to gain further insight into the behavior of unsaturated particulate materials, with emphasis on the pendular stage. First, interparticle forces are computed based on Laplace's equation; soil particles are ideally considered spherical or flat to facilitate the identification of the most relevant factors that affect unsaturated soil behavior. Second, the small strain stiffness is continuously measured on specimens subjected to drying, and changes in stiffness are related to changes in interparticle forces; data show important differences with previously published trends based on remolded specimens. Third, microscale experiments are performed to assess the strain at menisci failure in multiple deformation modes; results indicate that the lower the water content, the lower the strain required to eliminate the effects of capillarity, therefore, while capillary forces affect small strain stiffness, they may not contribute to large strain stiffness or strength. Finally, the rate of menisci regeneration is studied after a perturbation; stiffness recovery decreases with decreasing water content, and full recovery may not be reached when the degree of saturation is low. Several phenomena associated with the evolution of capillary forces during drying are identified.  相似文献   

6.
Factors affecting the strength, modulus, stress-strain, and time-to-failure relationships of moist-cured silicate-grouted sands were investigated from short-term and creep tests. Variables included in the short-term tests were curing time, sand gradation and mineralogy, rate of loading, curing time, and confining pressure. Confining pressure was varied up to 550 kPa, and the stress and strain loading rates were varied from 0.05 to 5.0 Pa∕min and from 0.01 to 1.0%∕min, respectively. The shear strength and failure strain of moist-cured grouted sands were independent of the confining pressure, but they were affected by all other variables investigated. Compressive failure strains for silicate-grouted sands were less than 0.4% and the limitation in improving the compressive strength of sand has been quantified. Grouted limestone sand had the highest strength. The creep behavior of grouted sand was also investigated. Stress-strain and time-to-failure relationships for grouted sands have been developed.  相似文献   

7.
Pore Pressure Generation of Silty Sands due to Induced Cyclic Shear Strains   总被引:2,自引:0,他引:2  
It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. Most previous research efforts have focused on clean sands, yet sand deposits with fines are more commonly found in nature. Previous laboratory liquefaction studies on the effect of fines on liquefaction susceptibility have not yet reached a consensus. This research presents an investigation on the effect of fines content on excess pore water pressure generation in sands and silty sands. Multiple series of strain-controlled cyclic direct simple shear tests were performed to directly measure the excess pore water pressure generation of sands and silty sands at different strain levels. The soil specimens were tested under three different categories: (1) at a constant relative density; (2) at a constant sand skeleton void ratio; and (3) at a constant overall void ratio. The findings from this study were used to develop insight into the behavior of silty sands under undrained cyclic loading conditions. In general, beneficial effects of the fines were observed in the form of a decrease in excess pore water pressure and an increase in the threshold strain. However, pore water pressure appears to increase when enough fines are present to create a sand skeleton void ratio greater than the maximum void ratio of the clean sand.  相似文献   

8.
Although horizontal directional drilling has become commonplace, there are problems associated with high drilling mud pressures causing hydraulic fracture leakage of mud out into the environment. Initiation of tensile fracture is examined here, using finite- element analysis to represent the sand material and the annulus of filtercake that forms around the borehole. The analyses examine the soil response as mud pressures are increased, including shear failure in the sand material and the cohesive filtercake layer. The study identifies the initial geostatic stress conditions and the drilling fluid pressures that initiate tensile stresses in the filtercake. The effects of filtercake thickness, borehole depth, and the location of the maximum tensile stresses are studied. Significant discrepancies are found relative to limits currently used in the industry. Tensile fracture may be responsible for some mud loss, but simple use of drilling mud pressures that prevent tensile circumferential stress may be overly conservative.  相似文献   

9.
Soil reinforcement with discrete fibers is a viable technique to reduce desiccation cracking in compacted clay soils. The reduction in cracking is attributed to an increase in the tensile strength of the fiber-soil composite. A theoretical model is developed to describe the mechanism of the increased tensile strength due to fiber inclusion of soil undergoing desiccation. The model includes a distinctive effective stress combination acting on the fiber strings due to the generated matric suction by desiccation. Model formulation makes use of Mohr-Coulomb failure criterion at the interface area between fibers and the surrounding soil. The desiccation process of the soil generates matric suction within the soil mass, under given stress condition. The basic elements used in the model formulation include soil-water characteristic curve, Mohr-Coulomb parameters, and unsaturated soil parameters. Fiber inclusion increases significantly the tensile strength of the fiber-soil composite. This increase in tensile strength is expressed as a function of fiber content and soil-water content in this paper. Comparisons are made to published data regarding changes in tensile strength with variable water content.  相似文献   

10.
Four geotechnical centrifuge tests with different soil layered systems were performed to investigate the movement and entrapment of water and of light nonaqueous phase liquids (LNAPLs) in unsaturated layered soil deposits. The tests were performed at 20 g and a vadose zone condition was created during the centrifuge tests by lowering the water table from the initially water saturated condition. During the water drainage stage, the water distribution within the models and the dynamic air–water capillary pressure saturation relationships of the three sands were obtained using tensiometers and resistivity probes. After achieving the unsaturated condition, a model LNAPL (Soltrol 220? or silicon oil) was injected near the soil surface and the movement and entrapment were monitored during the redistribution stage until the LNAPL reached the top of the water table. Complex LNAPL preferential flow and entrapment patterns were observed in the layered models with different textural interfaces due to the relative movement of all three phases [water, nonaqueous phase liquid (NAPL), and air]. The centrifuge tests data coupled with the numerical analyses show that NAPL properties, subsurface soil structures, initial water saturation, and NAPL infiltration rate affect the variation in entrapment conditions in heterogeneous unsaturated soil deposits.  相似文献   

11.
A comparison of the behavior of uncemented and grouted sands is presented. Four sands (Fontainebleau sand and three types of alluvial deposits of the Seine River) were tested. Specimens of grouted sands were prepared in the laboratory by injection of very fine cement or mineral grouts. An initial series of unconfined uniaxial compression tests and tensile tests was performed to highlight the effect of some key factors (mainly the cement-to-water ratio of the grout and the relative density of the granular skeleton) on the strength of the grouted sands. Subsequent triaxial tests showed that when a soil is impregnated by either a very fine cement grout or a mineral grout, both stiffness (secant stiffness or small-strain stiffness) and strength of the soil improve. Similar trends were observed for the behavior of both uncemented and grouted sands. The behavior of grouted sands can be roughly reproduced by applying a linear elastic, perfectly plastic model with a nonassociated Mohr–Coulomb yield criterion whose parameters can be easily determined. Finally, preliminary recommendations are proposed relative to improvements ratios of the parameters of this simple constitutive model that is still commonly used in geotechnical engineering.  相似文献   

12.
Foundry Green Sands as Hydraulic Barriers: Laboratory Study   总被引:2,自引:0,他引:2  
A laboratory testing program was conducted to assess the use of foundry sands from gray iron foundries, typically called green sands, as hydraulic barrier materials. Foundry green sands are mixtures of fine uniform sand, bentonite, and other additives. Specimens of foundry sand were compacted in the laboratory at a variety of water contents and compactive efforts and then permeated in rigid-wall and flexible-wall permeameters to define relationships between hydraulic conductivity, compaction water content, and dry unit weight. Additional tests were conducted to assess how hydraulic conductivity of compacted foundry sand is affected by environmental stresses such as desiccation, freeze-thaw, and chemical permeation. Results of the tests show that the hydraulic conductivity of foundry sand is sensitive to the same variables that affect hydraulic conductivity of compacted clays (i.e., compaction water content, and compactive effort). However, hydraulic conductivities <10?7 cm∕s can be obtained for many foundry sands using a broad range of water contents and compactive efforts, including water contents dry of optimum and at lower compactive effort. The hydraulic conductivity of foundry sand was generally unaffected by freeze-thaw, desiccation, or permeation with 0.1 N salt solution or municipal solid waste leachate, but was incompatible with acetic acid (pH = 3.5). Hydraulic conductivity of foundry sands correlates well with bentonite content and liquid limit, with hydraulic conductivity less than 10?7 cm∕s being achieved for bentonite content ≥6% and∕or liquid limit >20.  相似文献   

13.
Three potential lateral spreads exhibited negligible displacements during the 1999 Kocaeli, Turkey Earthquake (Mw = 7.5) even though they were located within 7?km of the fault rupture. These spreads are analyzed to verify and augment current procedures for predicting liquefaction resistance and lateral spread displacement. The sites include ?ark Canal and Cumhuriyet Avenue in Adapazari, underlain by fine-grained sediment, and Degirmendere Nose adjacent to Izmit Bay, a steeply sloping area underlain by moderately dense silty sand. The plasticity index and moisture content criteria of Bray and Sancio set forth in 2006 indicate that much of the fine-grained sediment is liquefiable. Even though liquefaction likely occurred, lateral spreading did not occur due either to the dilative nature of fine-grained, sandlike sediments or the inherent strength of claylike sediments. Corrected blow counts, (N1)60, in moderately dense sand at Degirmendere Nose range from 15 to 25 blows/30?cm, indicating that liquefaction should have occurred but that the silty sand was too dense and dilative to deform. This finding is consistent with the MLR procedure of Youd et al. set forth in 2002 that identifies liquefiable sands with (N1)60 greater than 15 blows/30?cm as resistant to lateral spread during earthquakes with M<8.  相似文献   

14.
There is considerable uncertainty in the determination of effective stress strength parameters of cemented soils from undrained triaxial tests. Large negative excess pore pressures are generated at relatively large strains (typically 4–5% for cemented silty sand) in isotropically consolidated undrained (CIU) tests, which results in gas coming out of solution during shear and significant variability in the measured peak deviator stress. In this study, different failure criteria for weakly cemented sands were evaluated based on the results of CIU and isotropically consolidated drained triaxial compression tests conducted on samples of artificially cemented sand. The use of = 0 as a failure criterion eliminates the variability between the undrained tests and also ensures that the mobilized failure strength is not based on the highly variable negative excess pore pressures. In addition, the resulting strains to failure are comparable to the strains to failure for the drained tests. Mohr-Coulomb strength parameters thus estimated from the undrained tests are generally lower than strength parameters obtained from drained tests, and the difference between the failure envelopes from undrained tests increases as the level of cementation increases. This divergence is attributed to differences in the stiffness of the cemented soil under the different loading conditions. The stiffness under undrained loading conditions decreases with increasing cementation due to an increase in the generation of positive excess pore pressure at low strains.  相似文献   

15.
Capillary Force and Water Retention between Two Uneven-Sized Particles   总被引:2,自引:0,他引:2  
Capillary force and water retention between two uneven-sized spherical particles are investigated. Previous studies have been limited to systems with even-sized particles. The appropriate definition of the boundary value problem for a water lens between two uneven-sized particles is presented under the consideration of thermodynamic free energy at the microscopic level. Capillary force and water retention under the consideration of toroidal approximation are also derived for a system with two uneven-sized particles. Comparison of normalized capillary force and water retention calculated by the free energy approach and toroidal approximation are conducted. The quantitative analysis shows that for a system with two identical particles, the behavior of water retention and normalized capillary force is very similar to some recent studies by others, confirming that the toroidal approximation provides reasonably good estimations for both capillary force and water retention. For a system with uneven-sized particles, it is shown that error in normalized capillary force could be significant as the matric suction approaches zero and the particle sizes become very different. The errors for the mean curvature of the meniscus for the toroidal approximation are significant where the matric suction is near zero. Thus for soils with varying particle sizes, it may be necessary to employ the exact solution to meniscus shape in order to accurately quantify normalized capillary force and water retention. The induced normalized capillary force increases inversely with the particle size, and is generally insensitive to the water content. For soil assembly with particle size of 0.01?mm, the normalized capillary force could reach 10?kPa, whereas for soil assembly with particle size of 1?mm, the normalized capillary force is on the order of 100?Pa.  相似文献   

16.
The application of geotechnical centrifuge modeling to environmental problems seems promising. In this paper, one aspect of similitude laws concerning the flow of water through soils is investigated. Within the Network of European Centrifuges for Environmental Geotechnic Research, several tests have been carried out to study similitude laws describing the capillary ascension in porous media at different levels of acceleration. The aim of this paper is to present the results obtained at Ruhr-Universit?t Bochum. A fine sand is used in the experiment. For the visualization of capillary height in the soil sample, image processing is used. Different boundary conditions (constant or variable water level) have been investigated and discussed. All these experiments confirm that capillary rise appears scaled by the factor N and time seems to be scaled with N2. Thus, these results support the possibility of extending the use of accelerated small-scale models to the capillary phenomenon in centrifuge and open the way to more complex investigations of flow and pollutant transport in unsaturated soils.  相似文献   

17.
Parametric Study of Unsaturated Drainage Layers in a Capillary Barrier   总被引:2,自引:0,他引:2  
Unsaturated drainage layers (UDLs) have been demonstrated to greatly increase the lateral diversion capacity of capillary barriers. The inclusion of a UDL allows native soils suitable for vegetation growth to be used as the finer soil as lateral drainage properties of the layer no longer need to be considered. A comprehensive numerical study was conducted to investigate the influence of the interface slope and the UDL material on the system's ability to laterally divert downward moving moisture. A capillary barrier system with and without a UDL was simulated for 10 years using daily varying climatic data for three locations in the United States. Three different sands were simulated as the UDL and were modeled at slopes of 5, 10, and 20%. The numerical results confirm that the inclusion of an unsaturated drainage layer at the fine∕coarse interface of a capillary barrier can provide significant improvements in the performance of the cover system by laterally draining water. This improvement in performance may allow the system to be successfully implemented in climates wetter than previously were thought suitable. The diversion length (the distance water is diverted laterally with no downward flow through the fine∕coarse interface) of a capillary barrier with a UDL was found to be proportional to the slope of the fine∕coarse interface. In addition, a relationship between lateral diversion lengths in a capillary barrier and the UDL material was developed and found to be dependent on the unsaturated flow characteristics of the UDL. These relationships allow the performance of a variety capillary barrier UDL designs to be calculated knowing the behavior of one system for a given location.  相似文献   

18.
This paper presents the results of a systematic laboratory investigation on the static behavior of silica sand containing various amounts of either plastic or nonplastic fines. Specimens were reconstituted using a new technique suitable for element testing of homogeneous specimens of sands containing fines deposited in water (e.g., alluvial deposits, hydraulic fills, tailings dams, and offshore deposits). The fabric of sands containing fines was examined using the environmental scanning electron microscope (ESEM). Static, monotonic, isotropically consolidated, drained triaxial compression tests were performed to evaluate the stress-strain-volumetric response of these soils. Piezoceramic bender element instrumentation was developed and integrated into a conventional triaxial apparatus; shear-wave velocity measurements were made to evaluate the small-strain stiffness of the sands tested at various states. The intrinsic parameters that characterize critical state, dilatancy, and small-strain stiffness of clean, silty, and clayey sands were determined. All aspects of the mechanical behavior investigated in this study (e.g., stress-strain-volumetric response, shear strength, and small-strain stiffness) are affected by both the amount and plasticity of the fines present in the sand. Microstructural evaluation using the ESEM highlighted the importance of soil fabric on the overall soil response.  相似文献   

19.
This paper presents experimental results and analysis of six model centrifuge experiments conducted on the 150?g-ton Rensselaer Polytechnic Institute centrifuge to investigate the effect of soil permeability on the response of end-bearing single piles and pile groups subjected to lateral spreading. The models were tested in a laminar box and simulate a mild infinite slope with a liquefiable sand layer on top of a nonliquefiable layer. Three fine sand models consisting of a single pile, a 3×1 pile group, and a 2×2 pile group were tested, first using water as pore fluid, and then repeated using a viscous pore fluid, hence simulating two sands of different permeability in the field. The results were dramatically different, with the three tests simulating a low permeability soil developing 3–6 times larger pile head displacements and bending moments at the end of shaking. Deformation observations of colored sand strips, as well as measurements of sustained negative excess pore pressures near the foundations in the “viscous fluid” experiments, indicated that an approximately inverted conical zone of nonliquefied soil had formed in these tests at shallow depths around the foundation, which forced the liquefied soil in the free field to apply its lateral pressure against a much larger effective foundation area. Additional p-y and limit equilibrium back-analyses support the hypothesis that the greatly increased foundation bending response observed when the soil is less pervious is due to the formation of such inverted conical volume of nonliquefied sand. This study provides evidence of the importance of soil permeability on pile foundations response during lateral spreading for cases when the liquefied deposit reaches the ground surface, and suggests that bending response may be greater in silty sands than in clean sands in the field. Moreover, the observations in this study may serve as basis for realistic practical engineering methods to evaluate pile foundations subjected to lateral spreading and pressure of liquefied soil.  相似文献   

20.
The results of an investigation into the sands of the highly clayey placer complex integrated deposit of the Fadeevskoe ore-placer site with high strength characteristics of sands and an increased content of fine fractions of valuable components are considered. Energy-dispersive microanalysis of rock samples is performed. Samples contain microelements of a broad range of precious (including gold, silver, and platinum), rare earth, and other elements. It is established that the sands of the gold-bearing placer under study are a rather complex object for disintegration. Acoustic characteristics of the sands under study in the initial state and under water saturation, which evidence that the fraction of maximal values of the shear modulus is considerably exceeded, are determined by the experimental–analytical method. To solve the question of microdisintegration, in order to recover spark and fine gold using more environmentally and technologically efficient means, it is proposed to use systems based on processes of the cavitation-acoustic effect on a mineral mixture component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号