首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Platelet-derived growth factor AB (PDGF-AB) has to be permanently present in the culture medium to achieve full proliferation (>90%) of AKR-2B fibroblasts. Upon removal after 1 h incubation time, only a small number of cells (<20%) entered the cell cycle. Concomitantly there was no increase in RNA- and protein-synthesis. The PDGF-receptor autophosphorylation reached a maximum after 30 min incubation with PDGF-AB. Tyrosine phosphorylation was no longer detectable after 2-4 h. The clustering of receptors into coated pits, analyzed by indirect immunofluorescence using a specific antibody against PDGF-beta-receptor, showed in contrast to autophosphorylation a biphasic kinetic. A first maximum was reached after 30 min, followed by a complete disappearance of coated pits, which regenerated in a second phase after 3 h and were long lasting. If PDGF-AB was removed after 1 h, the second phase was obliterated. The involvement of two different signalling pathways in these two phases was investigated in detail: (1) The ras-raf-MAP-kinase pathway and (2) the PI-3-kinase/p70(S6)-kinase pathway. PDGF-AB addition caused a fast (10 min) activation of MAP-kinase, which returned to background level after 1 h without any further activation later on. In contrast PDGF-AB led to a rapid (15-30 min) activation of the p70(S6)-kinase that persisted for 8-12 h just prior to the entry of the cells into S-phase. If PDGF-AB was removed after 1 h, the activation of this kinase ceased 3 h later. PDGF-AA, which is unable to promote division of AKR-2B cells, induced only a shortlasting p70(S6)-kinase activation. These observations add further evidence for the involvement of the p70(S6)-kinase pathway in the proliferation control of AKR-2B fibroblasts in the late G1 phase (4-8 h after growth factor addition). On the other hand, if the p70(S6)-kinase activation was prevented by the addition of 10 nM rapamycin, the cell division was not inhibited but only delayed by 4 h. Similar kinetics were observed when the PI-3-kinase was inhibited by 400 nM wortmannin. It is suggested that a regulatory element exists upstream of the p70(S6)-kinase and the PI-3-kinase. This regulatory element should be responsible for the transmission of late signals required for the progression through the cell cycle. This element is not involved in the immediate responses after PDGF-AB addition but must be stimulated within a second later phase of PDGF activation.  相似文献   

2.
Insulin has pleiotropic effects on the regulation of cellular growth, differentiation, and metabolism. The biochemical events ultimately leading to cell proliferation after insulin treatment have been demonstrated in detail by numerous research groups. However, depending on cell types, it has been shown that insulin has various effects on cell proliferation. Therefore, we attempted to more critically evaluate the effect of insulin on cell proliferation in 3T3 L1 fibroblasts. In this study, we investigated insulin's effect on cell proliferation by using [3H]thymidine incorporation, flow cytometry, and cell counting. In 3T3 L1 fibroblasts studied in 0.5% serum, insulin induced a two-fold increase in [3H]thymidine incorporation over at 48 h, and the maximal rate of DNA synthesis was observed during 8-12 h incubation. The flow cytometric analysis also showed that insulin increased the cell population in the S phase. After insulin treatment for 48 h, cell numbers increased approximately 45% in comparison with 0.5% serum control. Cell division was found to occur only once in 60 h after staining 3T3 L1 fibroblasts with carboxyfluorescein diacetate succinimidyl ester (CFSE). Taken together, this data indicates that insulin stimulated the transit from the G0/G1 to S phase, progressed the cell cycle through the G2/M phase, and increased the cell number. However, under our experimental conditions, cells divided only once in 60 h in the presence of insulin.  相似文献   

3.
Gastric body mucosal proliferation was quantified and localised under conditions of increased gastrin drive using a variety of techniques. Rats were given omeprazole 400 mumol/kg/day by gavage and after 30 days mean serum gastrin rose 11-fold (p < 0.001). Total mucosal polyamines rose 220% from 15.9 to 50.9 nmol/mg protein (p < 0.001). This was associated with a 238% increase in crypt cell production rate from 0.541 to 1.83 crypt cells/h by vincristine metaphase arrest (p < 0.02). Using computer aided counting of proliferating cell nuclear antigen (PCNA) immunostained nuclei to assess epithelial proliferation in hypergastrinaemia rat stomach: mucus neck cell PCNA labelling was increased by 41% (p < 0.001) and gland cell PCNA labelling was increased by 222% (p < 0.001). PCNA/AgNOR (argyrophilic nuclear organiser regions) co-stained sections were used to assess proliferative activity in cycling and non-cycling cell populations. Data from these experiments suggest that, in addition to increasing the number of mucosal cells in cycle, cell life and cell cycle duration may be reduced in hypergastrinaemia.  相似文献   

4.
The effect of lanthanide ions (Ln3+) and their coordination compounds of diethylenetriamine pentaacetic acid (DTPA) on the phase behavior of dipalmitoylphosphatidylcholine (DPPC) multi-lamellar liposomes has been studied by differential scanning calorimetry (DSC), Raman spectroscopy, and freeze-fracture electron microscopic techniques. The displacement of Ca2+ binding on DPPC liposomes by lanthanide ions was also studied. The results show that the binding degree of four kinds of chloride salts with DPPC liposomes is: YbCl3 > GdCl3 > LaCl3 > CaCl2. Lanthanide ions increase the phase transition temperature of DPPC liposomes and decrease the membrane fluidity. Freeze-fracture electron microscopic results show that La3+ enhances the order of DPPC membrane. The effect of coordination compounds of lanthanides with DTPA on the phase behavior of DPPC liposomes is smaller than that of their chlorides. La3+, Gd3+, and Yb3+, can displace Ca2+ binding on DPPC liposomes, but there coordination compounds of DTPA can hardly displace Ca2+. Raman spectroscopic results show that a very slight effect in lateral packing order of DPPC liposomes was observed at various concentrations of lanthanides.  相似文献   

5.
By flow cytometric dual parameter analysis of proliferating cell nuclear antigen (PCNA) and the Ki-67 antigen a detailed cell cycle analysis can be performed. In this study the coordinated expression of these two growth-related antigens was investigated in human haematopoietic cells at entrance into the cell cycle as well as at exit from the cycle. In mitogen-stimulated peripheral blood lymphocytes entering the first cell cycle, the Ki-67 antigen was found to be expressed in S phase cells and not in G1 cells. Thus, the Ki-67 antigen expression in PCNA-positive S phase cells differed between continuously cycling cells and cells entering the cell cycle. Based on this difference, it was possible to visualize and evaluate the recruitment of cells into the first cell cycle from a resting stage. This new cell cycle parameter can give additional information concerning tumour growth. The Ki-67 antigen was also studied during different stages of G1 and was found to be expressed at high levels in early G1 cells compared with other parts of G1.  相似文献   

6.
Bistheonellide A, an inhibitor of actin polymerization from the marine sponge Theonella sp., was introduced at a concentration of 100 nM into rat fibroblast of 2.4 x 10(4) cells/ml. Within 1 h, it disrupted stress fibers, accompanied by a marked change of the cell morphology, resulting in the formation of processes from the cell surface. Further incubation for 24 h in the presence of 100 nM bistheonellide A led to binucleation in most cells and subsequent inhibition of cell cycle progression. When bistheonellide A was withdrawn from the culture medium, binuclear cells began to grow again within 20 h and reverted to mononuclear morphology. Flow cytometric analysis fluorescence-activated cell sorting showed that 2C diploid DNA content in G1 phase was changed into 4C content of tetraploid for the bistheonellide A treated-cells in G1 phase and into 8C content during G2 and M phase. Therefore, we suggested that the bistheonellide A treatment inhibited cytokinesis, but not mitosis in M phase, and that treated cells were arrested at the early G1 phase. These effects of bistheonellide A on the cell cycle progression of 3Y1 fibroblast were also observed more prominently in cells synchronized in S phase with hydroxyurea. Cells in G0 phase were then activated by the addition of fetal calf serum in the presence of 100 nM bistheonellide A. Cell cycle progression of the bistheonellide A-treated cells was obviously slowed down or completely inhibited during G1 phase. These results reveal that actin filaments are not only essential to cytokinesis but also for promoting the progression of cell cycle G1 to S phase.  相似文献   

7.
We studied the capacity of doxorubicin encapsulation in liposomes of various lipid compositions to circumvent multidrug resistance in several variants of the C6 rat glioblastoma cell line in culture, and to inhibit azidopine binding to membranes isolated from these cells. Three formulations of liposomes were prepared: (a) phosphatidylcholine (PC)/phosphatidylserine (PS)/cholesterol (cho) at a 9/24 ratio; (b) PC/cardiolipin (CL)/cho at 10/1/4 ratio; (c) dipalmitoylphosphatidylcholine (DPPC)/cho at 11/4 ratio. Unloaded liposomes presented no cytotoxicity against sensitive or resistant cells. Doxorubicin encapsulated in PC/PS/cho and PC/CL/cho liposomes had a cytotoxic activity close to that of free doxorubicin, whereas doxorubicin encapsulated in DPPC/cho liposomes was significantly less active than free doxorubicin in sensitive as well as in two of the three multidrug resistant cell lines, and as active as free doxorubicin in the third one. Free doxorubicin was able to decrease 50% of [3H]azidopine photolabelling to P-glycoprotein at a concentration of 40 microM; doxorubicin encapsulated in PC/CL/cho or PC/PS/cho liposomes was able to inhibit [3H]azidopine binding similarly as free drug, whereas doxorubicin encapsulated in DPPC/cho liposomes had no significant effect on this parameter. Unloaded liposomes of either lipid composition had no effect on [3H]azidopine binding. Together with physical studies performed in parallel on doxorubicin trapping in liposomes (J Liposome Res 1993, 3, 753-766), these results suggest that doxorubicin leaked out of fluid liposomes (PC/PS/cho or PC/CL/cho), whereas rigid liposomes (DPPC/cho) were able to sequester the drug more efficiently. In that case, however, no availability of the drug to the cells was possible and only a weak cytotoxicity was exhibited, especially without any favourable effect on multidrug resistance. In conclusion, no reversal of doxorubicin resistance was found to occur through liposomal encapsulation of the drug.  相似文献   

8.
9.
The interferon (IFN)-induced, double stranded RNA (dsRNA)-activated serine/threonine kinase, PKR, is a potent negative regulator of cell growth when overexpressed in yeast or mammalian cells. To determine whether endogenous PKR plays a role in cell growth control, we have investigated the regulation of PKR levels and activity during the cell cycle in human glioblastoma T98G cells. The steady-state level of PKR mRNA in T98G cells was highest in growth arrested cells, dropped sharply within 3 h of serum stimulation then gradually increased as cells progressed through G1, reaching a plateau in early S phase. PKR protein level increased following serum stimulation reaching a peak at the G2+M boundary and declining thereafter. In contrast, PKR kinase activity exhibited two peaks, in early G1 and at the G1/S boundary, declining sharply in early S phase. Thus, the activity profile did not follow the protein profile indicating a tight regulation of PKR at the level of activity. In T98G cells expressing the catalytically inactive PKRK296R the dsRNA-induced activation of NF-kappaB and IRF-1 was suppressed and the mutant cells exhibited resistance to stress induced apoptosis. Cell cycle distribution analysis showed that the mutant expressing cells exhibited longer G1 phase and fewer cells engaged in S phase. Furthermore, early passage mouse embryo fibroblasts derived from PKR knockout mice grew more slowly compared with the control cells. Taken together these results suggest that PKR may play a role in cell cycle progression.  相似文献   

10.
Three DNA damage-responsive cell cycle checkpoints can be shown to operate in diploid human fibroblasts. One checkpoint arrests growth in G1, another inhibits replicon initiation in S phase cells, and the third delays progression from G2 into mitosis. Progression from G2 into M is controlled in part by a cyclin-dependent kinase (cyclin B/Cdk1) that is regulated by tyrosine phosphorylation. Phosphorylation of Tyr15 on Cdk1 is inhibitory for kinase activity. Activation of cyclin B/Cdk1 at the onset of mitosis is accomplished by a phosphatase, Cdc25C, that interacts with cyclin B/Cdk1 in an autocatalytic feedback loop to remove the inhibitory phosphate at Tyr15 and activate kinase activity. DNA damage triggers G2 delay by inhibiting formation of the autocatalytic feedback loop so that dephosphorylation of Tyr15 does not occur. This suppression of activation of cyclin B/Cdk1 appears to account for the failure of damaged G2 cells to progress into mitosis. Once the damage to DNA is repaired, cells resume progression into mitosis as the cycle is re-engaged. The isoflavone genistein inhibits tyrosine kinases, including one that phosphorylates Cdk1 on Tyr15. This kinase, p56/p53lyn is rapidly induced by treatments that trigger cell cycle checkpoints (ionizing radiation, cytosine arabinoside), suggesting that this kinase may actively delay the onset of mitosis by phosphorylating Tyr15 on Cdk1. Genistein also inhibits type II DNA topoisomerase to produce a form of DNA damage that triggers all of the DNA damage-responsive cell cycle checkpoints. A brief 10 min incubation with the topoisomerase poison amsacrine was sufficient to trigger the S phase checkpoint response and inhibit replicon initiation. Inhibition of replicon initiation by 1 microM amsacrine was maximal 20-30 min after drug treatment and by 120 min, the checkpoint response had decayed to allow near control rates of replicon initiation. Topoisomerase II poisons also are powerful clastogens inducing lethal and carcinogenic chromosomal aberrations. Type II topoisomerase can break DNA in a region of chromosome 11q23 that contains the ataxia telangiectasia gene (ATM). The ATM gene controls all of the DNA damage-responsive cell cycle checkpoints. Chromosomal aberrations in 11q23 are frequently seen in acute myeloid leukemia that develops as a consequence of etoposide chemotherapy. Thus, topoisomerase poisons such as genistein may trigger chromatid breakage to inactivate AT gene function, disable cell cycle control, and induce genetic instability.  相似文献   

11.
The interaction of cyclodextrins (CDs) with dipalmitoylphosphatidylcholine (DPPC) liposomes has been studied using differential scanning calorimetry (DSC). The phase transition temperature and the enthalpy change due to the gel-to-liquid crystalline phase transition of the liposomes were measured in the presence of alpha-CD, beta-CD, gamma-CD, heptakis (2,6-di-O-methyl)-beta-CD (DOM-beta-CD), heptakis (2,3,6-tri-O-methyl)-beta-CD (TOM-beta-CD) and 2-hydroxylpropyl beta-CD, respectively. The effects on the change of enthalpy of the transition temperature were remarkable in the order of DOM-beta-CD > alpha-CD > TOM-beta-CD. The residual CDs caused scarcely detectable changes in the enthalpy changes and the transition temperatures. In order to clarify the DSC curves in the presence of the CDs mentioned above, the type of interactions which occurred between CDs and DPPC liposomes were studied. Consequently, it was found that DOM-beta-CD forms a soluble complex and alpha-CD forms an insoluble complex with DPPC liposomes, whereas only a slight amount of TOM-beta-CD was suggested to penetrate the matrix of the liposomes.  相似文献   

12.
The cdc25A phosphatase removes inhibitory phosphates from threonine-14 and tyrosine-15 of cyclin dependent kinase-2 (cdk2) in vitro, and it is therefore widely assumed that cdc25A positively regulates cyclin E- and A-associated cdk2 activity at the G1 to S phase transition of the mammalian cell division cycle. Human cdc25A was introduced into mouse NIH3T3 fibroblasts co-expressing a form of the colony-stimulating factor-1 (CSF-1) receptor that is partially defective in transducing mitogenic signals. Cdc25A enabled these cells to form colonies in semisolid medium containing serum plus human recombinant CSF-1 in a manner reminiscent of cells rescued by c-myc. However, cdc25A-rescued cells could not proliferate in chemically defined medium containing CSF-1 and continued to require c-myc function for S phase entry. When contact-inhibited cells overexpressing cdc25A were dispersed and stimulated to synchronously enter the cell division cycle, they entered S phase 2-3 h earlier than their parental untransfected counterparts. Shortening of G1 phase temporally correlated with more rapid degradation of the cdk inhibitor p27Kip1 and with premature activation of cyclin A-dependent cdk2. Paradoxically, tyrosine phosphorylation of cdk2 increased considerably as cells entered S phase, and cdc25A overexpression potentiated rather than diminished this effect. At face value, these results are inconsistent with the hypothesis that cdc25A acts directly on cdk2 to activate its S phase promoting function.  相似文献   

13.
GADD45 is a ubiquitously expressed mammalian gene that is induced by DNA damage and certain other stresses. Like another p53-regulated gene, p21WAF1/CIP1, whose product binds to cyclin-dependent kinases (Cdk's) and proliferating cell nuclear antigen (PCNA), GADD45 has been associated with growth suppression. Gadd45 was found to bind to PCNA, a normal component of Cdk complexes and a protein involved in DNA replication and repair. Gadd45 stimulated DNA excision repair in vitro and inhibited entry of cells into S phase. These results establish GADD45 as a link between the p53-dependent cell cycle checkpoint and DNA repair.  相似文献   

14.
Retinoic acid (RA) is an important mediator of cell differentiation. It stimulates hCG secretion by JEG-3 choriocarcinoma cells in vitro after a time lag. The first aim of this study was to characterize which types of retinoid receptors (RARs and RXRs) are present in JEG-3 cells. Using Western blot analysis and immunocytochemistry with specific antibodies as well as Northern blot analysis, we found that JEG-3 cells expressed RAR alpha and RXR alpha, the latter being the predominant receptor. We then analyzed the action on cell proliferation and hCG secretion of the physiological retinoids all-trans RA (RA) and 9 cis RA as well as synthetic retinoids with specific affinity for RAR alpha and RXR alpha. All these retinoids were potent inhibitors of cell growth, maximal inhibition (72 +/- 2%) being observed after 4 days of treatment with Ro 25, a RXR alpha specific ligand. Within 24 h, 9 cis RA and Ro 25 stimulated hCG secretion, and maximal stimulation (1,472 +/- 10%) occurred at 48 h with the RXR alpha-specific ligand. The RAR alpha-specific ligand also stimulated hCG secretion but to a lower extend and after a delay of 48 h. These results suggest a predominant role of RXR alpha in mediating the biological effects of retinoids on JEG-3 cells and the possible induction by RA itself of the metabolic pathway leading to 9 cis RA.  相似文献   

15.
In an attempt to elucidate mechanisms underlying the variation in radiosensitivity during the cell cycle, mutations in the HPRT gene were selected with 6-thioguanine, quantified and characterized in synchronous human bladder carcinoma cells (EJ30-15) that were irradiated in G1 or S phase with 3 or 6 Gy. Synchronous cells were obtained by mitotic selection, with approximately 98% of the cells in G1 phase when they were irradiated after 3 h of incubation, and 75% in S phase when they were irradiated after 14 h of incubation. The mutant frequencies were approximately 4-fold higher (P < 0.01) when cells were irradiated in G1 phase compared with S phase, and the lowest frequency (1.5 x 10(-5) for 3 Gy during S phase) was approximately 10-fold higher than the spontaneous frequency. Exon analysis by multiplex polymerase chain reaction was performed on DNA isolated from each independent mutant. The different types of mutants were categorized as class 1, which consisted of base-pair changes or small deletions less than 20 bp; class 2, which consisted of deletions greater than 20 bp but with one or more HPRT exons present; and class 3, which consisted of deletions encompassing the entire HPRT gene and usually genomic markers located 350-750 kbp from the 5' end of the gene and/or 300-1400 kbp from the 3' end. A "hotspot" for class 2 deletions was observed between exons 6 and 9 (P < 0.01). For cells irradiated during G1 phase, the percentages for the different classes (total of 78 mutants) were similar for 3 and 6 Gy, with a selective induction of class 3 mutants (34-38%) compared with spontaneous mutants (3%, total 20). When S-phase cells were irradiated with 3 Gy, there were fewer class 1 mutants (21%, total 37) than when cells were irradiated in G1 phase with 3 Gy (45%, total 42) (P < 0.01). The greatest change was observed when the dose was increased in S phase from 3 Gy to 6 Gy (total of 43 mutants), with the frequency of class 2 mutants decreasing dramatically from 30% to 1% (P < 0.005). A similar decrease in class 2 mutants with an increase in dose has been observed by others in asynchronous cultures of normal human fibroblasts. We hypothesize that these differences occur because: (a) there is more error-free repair of double-strand breaks (DSBs) during S than G1 phase; (b) a single DSB within the HPRT gene causes a class 2 mutation or a certain percentage of class 1 mutations, while two DSBs, with one in each approximately 1-Mbp region 5' and 3' of the gene, cause a class 3 mutation; and (c) a repair process that is induced when the dose during S phase is increased from 3 to 6 Gy results in a preferential decrease in class 2 mutations.  相似文献   

16.
The methodological issues for measuring colorectal epithelial cell proliferation, an intermediate end point for studies of colon neoplasia, in epidemiological studies are deceptively numerous and complex, with few methodological data available. Accordingly, during our experience with measuring colorectal epithelial cell proliferation from nearly 500 participants attending over 1300 study visits over a 6-year period, we recorded data on a variety of measurement variations. Methods investigated included rectal biopsy technique, general histological and labeling procedures [including the tritiated thymidine, 5-bromodeoxyuridine (BrdUrd), and the proliferating cell nuclear antigen (PCNA) immunohistochemical techniques used to label S-phase cells in colonic crypts in rectal biopsy specimens], biopsy scoring procedures, and summary scoring methods. Findings include that the PCNA technique was the simplest, most economical, and least time-consuming. The BrdUrd labeling failure rate was 15% versus < 1% for PCNA. The percentage of labeled cells (labeling index) was highest using PCNA in biopsies processed without prior incubation, intermediate using PCNA in biopsies processed with prior incubation as for BrdUrd, and lowest using BrdUrd. The percentage of labeled cells that were in the upper 40% of the crypt (phi h) was higher using BrdUrd than PCNA; visit-to-visit correlations were higher using PCNA (r = 0.51 versus 0.35), and visit-to-visit variability was lower and between-person variability was higher using PCNA. Intra- and inter-rater reliabilities for the techniques were comparable (PCNA intra-rater r = 0.93, inter-rater r = 0.92). The PCNA technique, compared to the BrdUrd technique, is more feasible and reliable, provides a more accurate estimate of the labeling index, and cell proliferation measures determined with PCNA have statistical properties that are generally more favorable for detecting differences in clinical trials. Thus, the PCNA technique may be preferable to techniques requiring incubation of biopsies. Other methodological findings lead us to recommend that, for larger studies measuring colorectal epithelial cell proliferation on outpatient rectal biopsies, biopsies should be taken 10 cm above the anus using a flexible, preferably jumbo cup, endoscopic forceps through a rigid sigmoidoscope, and histological sections should be 3 microns thick taken 50 microns apart.  相似文献   

17.
The effect of X-irradiation of cell lines from LEC and WKAH strain rats on a progression of cell cycle was investigated. When WKAH rat cells were exposed to 5 Gy of X-rays and their cell cycle distribution was determined by a flow cytometer, the proportion of S-phase cells decreased and that of G2/M-phase cells increased at 8 hr post-irradiation. At 18 and 24 hr post-irradiation, approximately 80% of the cells appeared in the G1 phase. On the contrary, the proportion of S-phase cells increased and that G1-phase cells decreased in LEC rats during 8-24 hr post-irradiation, compared with that at 0 hr post-irradiation. Thus, radiation-induced delay in the progression from the G1 phase to S phase (G1 arrest) was observed in WKAH rat cells but not in LEC rat cells. In the case of WKAH rat cells, the intensities of the bands of p53 protein increased at 1 and 2 hr after X-irradiation at 5 Gy, compared with those of unirradiated cells and at 0 hr post-irradiation. In contrast, the intensities of the bands were faint and did not significantly increase in LEC rat cells during 0-6 hr incubation after X-irradiation. Present results suggested that the radioresistant DNA synthesis in LEC rat cells is thought to be due to the abnormal G1 arrest following X-irradiation.  相似文献   

18.
The role of phospholipase A2 (PLA2) enzymes in the degradation of internalized dipalmitoylphospharidylcoline (DPPC) by rat granular pneumocytes was evaluated with cells in 24 h primary culture on microporous membranes. In cell sonicates and rat lung homogenates, the transition state analogue MJ33 inhibited acidic (pH 4), Ca(2+)-independent PLA2 (aiPLA2) while p-bromophenacylbromide (pBPB) inhibited alkaline (pH 8.5), Ca(2+)-dependent PLA2 and phospholipase C activities. With intact cells, degradation of [3H]methylcholine-labeled DPPC during 2 h incubation was inhibited 48% by MJ33, 20% by pBPB, and 69%by the combination. The inhibitors (20 microM pBPB, 3 mol% MJ33) had no effect on cellular dye exclusion, adherence to membranes, or uptake of DPPC. Arachidonyl trifuoromethylketone, a cytoplasmic PLA2 inhibitor, had no effect on cellular degradation of DPPC. Degradation was depressed approximately 20% by the addition of NH4Cl or methylamine to the medium, suggesting a role for an acidic intracellular compartment in DPPC metabolism. Subcellular fractions prepared by differential centrifugation of rat lung homogenates showed highest specific activity of aiPLA2 in the lamellar body and lysosomal fractions, lower activity in cytosol, and essentially no activity in mitochondria, microsomes, or plasma membranes. The results of this study indicate that aiPLA2 has the major role in the degradation of internalized DPPC by granular pneumocytes and they are compatible with participation of lysosomes/lamellar bodies in DPPC metabolism.  相似文献   

19.
Melanocytes are photoresponsive cells which respond to varying doses of UV exposure in the G2 phase of the cell cycle by prominent dendricity. This photoresponse is related to indoleamine light sensitivity. The present study highlights the role of indoleamines in the photomodulation of the melanocyte cell cycle. The study was conducted on 40 whole-skin organ cultures taken from the marginal zone of vitiligo. Twenty organ cultures were subjected to G2-phase arrest, while 20 were incubated in tryptamine. The organ cultures were incubated in the dark, exposed to a pulse of 120 s UV at 2 h of incubation and harvested 3 and 6 h after UV exposure. It has been reported that the photosensitive enzymes N-acetyl transferase (NAT) and hydroxyindole-o-methyl transferase (HIOMT) are activated during the G2 phase. The conversion of serotonin to melatonin is inhibited by UV exposure as seen at 3 h. This activity recovers on continued dark incubation 6 h after UV exposure. On incubation with tryptamine, UV exposure results in utilisation of tryptamine as seen by prominent indoleamine positivity. Three hours after UV exposure, there is 75% dendricity indicating G2 phase traverse. There is a corresponding high serotonin positivity with a low melatonin positivity. This is reversed following 6 h of dark incubation with high melatonin positivity indicating reactivation of NAT and HIOMT. This is accompanied by a doubling of the melanocyte number due to mitotic traverse and an arrest in G1 phase with low utilisation of tryptamine. Thus tryptamine is utilised by melanocytes on UV exposure to be synchronised and traversed into G2 phase activating the photosensitive enzymes NAT and HIOMT. When followed by a dark phase, melatonin accumulates to traverse the melanocytes through M-phase of the cell cycle with doubling of the cell number. Thus the uptake and metabolisation of indoleamine precursors photomodulate the melanocyte cell cycle on UV exposure.  相似文献   

20.
The p21Cdn1 protein (cip1/waf1/sdi1) plays an important role as an inhibitor of mammalian cell proliferation in response to DNA damage. By interacting with and inhibiting the function of cyclin-Cdk complexes, p21 can block entry into S phase. p21 can also directly inhibit replicative DNA synthesis by binding to the DNA polymerase sliding clamp factor PCNA. When cells are damaged and p21 is induced, DNA nucleotide excision repair (NER) continues, even though this pathway is PCNA-dependent. We investigated features of p21-resistant NER using human cell extracts. A direct end-labelling approach was used to measure the excision of damaged oligonucleotides by NER and no inhibition by p21 was found. By contrast, filling of the approximately 30 nt gaps created by NER could be inhibited by pre-binding p21 to PCNA, but only when gap filling was uncoupled from incision. Binding p21 to PCNA could also inhibit filling of model 30 nt gaps by both purified DNA polymerases delta and epsilon. When p21 was incubated in a cell extract before addition of PCNA, inhibition of repair synthesis was gradually relieved with time. This incubation gives p21 the opportunity to associate with other targets. As p21 blocks association of DNA polymerases with PCNA but does not prevent loading of PCNA onto DNA, repair gap filling can occur rapidly as soon as p21 dissociates from PCNA. A synthetic PCNA-binding p21 peptide was an efficient inhibitor of NER synthesis in cell extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号