首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particulate ceramic composites that were composed of a combustion-synthesized β';-SiAlON matrix and dispersed MoSi2 particles were hot pressed at 1600°C in a nitrogen atmosphere. The physical and mechanical properties of the composites that contained 15, 30, and 45 vol% MoSi2 were evaluated. The average four-point bend strength, fracture toughness, and Vickers hardness of the composites were in the ranges of 500-600 MPa, 3-4 MP·am1/2, and 11-13 GPa, respectively. The measured mechanical strength and hardness were very similar to the values that were predicted from the rule of mixtures. The fracture toughness of the combustion-synthesized β';-SiAlON (2.5 MPa·m1/2) was apparently enhanced by the MoSi2 particles that were added. The increase in the fracture toughness was predominately attributed to the residual thermal stress that was induced by the thermal expansion mismatch between the MoSi2 particles and the β';-SiAlON matrix. The composites showed improved electrical conductivity and oxidation resistance over monolithic β';-SiAlON. High-resolution transmission electron microscopy examination of the composites indicated that the MoSi2 was chemically well compatible with the β';-SiAlON.  相似文献   

2.
The physical and mechanical properties of hot-pressed Si3N4–MoSi2 particulate composites containing 15 and 30 vol% MoSi2 were studied. The average room-temperature four-point bend strength, fracture toughness, and electrical resistivity are 522 MPa, 3.6 MPa·√m, and 6.3 × 105Χ·cm for the 15 vol% MoSi2 composite, and 487 MPa, 5.3 MPa·√m, and 0.31 Ω·cm for the 30 vol% MoSi2 composite. The mechanical properties of the composites are very close to those of hot-pressed Si3N4 ceramics. The high electrical conductivity of the 30 vol% MoSi2 composite was attributed to the percolation effect of MoSi2 particles. Parabolic oxidation behaviors were observed for the 30 vol% MoSi2 composite during the 1200°C long-term oxidation experiments.  相似文献   

3.
A ZrB2-based composite was fully densified by pressureless sintering at 1850°C with addition of 20 vol% MoSi2. The microstructure was very fine, with mean dimensions of ZrB2 grains around 2.5 μm. The four-point flexural strength in air was in excess of 500 MPa up to 1500°C.  相似文献   

4.
Dense SiC/MoSi2 nanocomposites were fabricated by reactive hot pressing the mixed powders of Mo, Si, and nano-SiC particles coated homogeneously on the surface of Si powder by polymer processing. Phase composition and microstructure were determined by methods of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive spectrometry. The nanocomposites obtained consisted of MoSi2, β-SiC, less Mo5Si3, and SiO2. A uniform dispersion of nano-SiC particles was obtained in the MoSi2 matrix. The relative densities of the monolithic material and nanocomposite were above 98%. The room-temperature flexural strength of 15 vol% SiC/MoSi2 nanocomposite was 610 MPa, which increased 141% compared with that of the monolithic MoSi2. The fracture toughness of the nanocomposite exceeded that of pure MoSi2, and the 1200°C yield strength measured for the nanocomposite reached 720 MPa.  相似文献   

5.
Until recently, it was accepted that Ce3+ cations, with an ionic radius ( r ) of 1.03 Å, were too large to form an α-SiAlON structure. However, more-recent studies have shown that cerium cations can be incorporated into α-SiAlON via quenching at a rate of 600°C/min, after sintering at 1800°C. Thus far, no α-SiAlON formation has been observed for La3+ cations with r = 1.06 Å. In the present work, the possibility of having the La3+ species as a dopant cation in α-SiAlON has been investigated by using La2O3 alone or in equimolar mixtures with CaO or Yb2O3. The resulting materials have been heat-treated at a temperature of 1450°C for up to 720 h to devitrify the grain-boundary glass into crystalline phases and also to observe the α→β SiAlON transformation. X-ray diffractometry on samples that were densified with single cations revealed that the La3+ cation alone does not form an α-SiAlON; rather, it forms the N-phase (La3Si8O4N11) with a ß-SiAlON phase. In the case of multiple cations, α-SiAlON was observed only as a matrix phase. Energy-dispersive X-ray measurements have proven that La3+ cations can be accommodated into the α-SiAlON structure and this structure also does not transform to β-SiAlON at lower temperatures.  相似文献   

6.
A MoSi2/SiCP composite was synthesized by in situ reactive sintering of a mixture of molybdenum, silicon, and carbon powders. Its microstructural features were studied by X-ray energy dispersive spectroscopy (EDS), conventional transmission electron microscopy (CTEM), and high-resolution transmission electron microscopy (HREM). It was determined that the composite was composed of α-MoSi2 and β-SiC. There were no specific orientation relationships between the MoSi2 matrix and SiCP, because the MoSi2 and SiC were formed at 1450°C by the reaction of solid Mo and C and liquid Si. The abrupt change occurring in the microstructure of the composite is explained by the presence of an interface between MoSi2 and SiCP, where no observable SiO2 amorphous layer or particles were found. Microtwins and stacking faults were frequently observed in {111} planes of SiCP.  相似文献   

7.
Hafnium diboride (HfB2)- and hafnium carbide (HfC)-based materials containing MoSi2 as sintering aid in the volumetric range 1%–9% were densified by spark plasma sintering at temperatures between 1750° and 1950°C. Fully dense samples were obtained with an initial MoSi2 content of 3 and 9 vol% at 1750°–1800°C. When the doping level was reduced, it was necessary to raise the sintering temperature in order to obtain samples with densities higher than 97%. Undoped powders had to be sintered at 2100°–2200°C. For doped materials, fine microstructures were obtained when the thermal treatment was lower than 1850°C. Silicon carbide formation was observed in both carbide- and boride-based materials. Nanoindentation hardness values were in the range of 25–28 GPa and were independent of the starting composition. The nanoindentation Young's modulus and the fracture toughness of the HfB2-based materials were higher than those of the HfC-based materials. The flexural strength of the HfB2-based material with 9 vol% of MoSi2 was higher at 1500°C than at room temperature.  相似文献   

8.
The in situ β-Si3N4/α'-SiAlON composite was studied along the Si3N4–Y2O3: 9 AlN composition line. This two phase composite was fully densified at 1780°C by hot pressing Densification curves and phase developments of the β-Si3N4/α'-SiAlON composite were found to vary with composition. Because of the cooperative formation of α'-Si AlON and β-Si3N4 during its phase development, this composite had equiaxed α'-SiAlON (∼0.2 μm) and elongated β-Si3N4 fine grains. The optimum mechanical properties of this two-phase composite were in the sample with 30–40%α', which had a flexural strength of 1100 MPa at 25°C 800 MPa at 1400°C in air, and a fracture toughness 6 Mpa·m1/2. α'-SiAlON grains were equiaxed under a sintering condition at 1780°C or lower temperatures. Morphologies of the α°-SiAlON grains were affected by the sintering conditions.  相似文献   

9.
The high-temperature stability and behavior of MoSi2 was studied by heating dense sintered specimens under a vacuum of 10−5 mm Hg in the temperature range 1700° to 2000°C. The resulting material was examined using physical measurements, X-ray analysis, and metallographic techniques. The decomposition of MoSi2 into Mo5Si3 is described. The Mo5Si3-MoSi2 eutectic temperature was determined as 1900° C, and the melting points of MoSi5 and Mo5Si3 were determined as 1980° and 2085° C, respectively.  相似文献   

10.
The oxidation process of MoSi2 is very complex, and controversial results have been reported, especially for the early-stage oxidation before the formation of passive SiO2 film. Most oxidation studies have been carried out on bulk consolidated samples, and the early stage of oxidation has not been studied. In this investigation, very fine MoSi2 powder with an average particle size of 1.6 μm was used. Such a fine particle size makes it easier to study the early stages of oxidation since a significant portion of the powder is oxidized before the formation of passive SiO2 film. The oxidation kinetics of commercial MoSi2-SiC and MoSi2-Si3N4 powder mixtures were also studied for comparison. Weight changes were measured at discrete time intervals at 500° to 1100°C in 0.14 atm of oxygen. X-ray diffraction was used to identify the phases formed during oxidation. Our results show the formation of MoO3 phase and an associated weight gain at low temperatures (500° and 600°C). At temperatures higher than 900°C, Mo5Si3 phase formed first and was subsequently oxidized to solid SiO2 and volatile MoO3, resulting in an initial weight gain followed by subsequent weight loss. A model based on the assumption that oxidation kinetics of both MoSi2 and Mo5Si3 are proportional to their fractions in the system describes the experimental data well.  相似文献   

11.
Continuously graded MoSi2-ZrO2(2Y) materials with high density (97.5% of theoretical) have been fabricated by uniaxial wet-molding, followed by hot pressing (1000°C/1 h/30 MPa) and hot isostatic pressing (1400°C/2 h/196 MPa). Their composition profiles are greatly influenced by the viscosity of mixed solutions of glycerin and ethanol used as a dispersion medium; a linear compositional gradient from MoSi2/ZrO2(2Y) 70/30 to 20/80 mol% is obtained from the solution (50/50 vol%) with a viscosity of 20 mPa s. Vickers hardness (Hv) and fracture toughness (KIC) increase from 9.7 to 12.4 GPa and from 5.1 to 12.5 MPa m1/2, respectively, with increasing ZrO2(2Y) composition.  相似文献   

12.
Two calcium-doped α-SiAlON compositions (Ca0.6Si10.2Al1.8−O0.6N15.4 and Ca1.8Si6.6Al5.4O1.8N14.2) were prepared by hot pressing at 1600° and 1500°C, respectively, for complete phase transformation from α-Si3N4 to α-SiAlON. Both samples were subsequently fired at different temperatures for different periods of time to study the grain growth of α-SiAlON. Elongated α-SiAlON grains were developed in both samples at high temperatures. The kinetics of grain growth was investigated based on the variations in length and width of the α-SiAlON grains under different sintering conditions. Different growth rates were found between the length and width directions of the α-SiAlON crystals, resulting in anisotropic grain growth in the microstructural development.  相似文献   

13.
Details of the fabrication and microstructures of hot-pressed MoSi2 reinforced–Si3N4 matrix composites were investigated as a function of MoSi2 phase size and volume fraction, and amount of MgO densification aid. No reactions were observed between MoSi2 and Si3N4 at the fabrication temperature of 1750°C. Composite microstructures varied from particle–matrix to cermet morphologies with increasing MoSi2 phase content. The MgO densification aid was present only in the Si3N4 phase. An amorphous glassy phase was observed at the MoSi2–Si3N4 phase boundaries, the extent of which decreased with decreased MgO level. No general microcracking was observed in the MoSi2–Si3N4 composites, despite the presence of a substantial thermal expansion mismatch between the MoSi2 and Si3N4 phases. The critical MoSi2 particle diameter for microcracking was calculated to be 3 μm. MoSi2 particles as large as 20 μm resulted in no composite microcracking; this indicated that significant stress relief occurred in these composites, probably because of plastic deformation of the MoSi2 phase.  相似文献   

14.
Commercial β-SiAlON ceramics were joined using mixed Si3N4, Y2O3, Al2O3, and SiO2 powders. At a joining temperature of 1600°C and a hold time in excess of 10 min, the adhesive was converted to an approximate 60:40 vol% composite of β-SiAlON–glass-ceramic. The grain size of the acicular β-SiAlON grains precipitated in the joint (submicrometer diameter, average aspect ratio of 10) was significantly smaller than those in the adherend ceramic (1–5 μm diameter). Intergrowth of β-SiAlON grains at the joint interface resulted in high bond strengths. The chemistry and microstructure of the ceramic adhesives used are described.  相似文献   

15.
The thermal and electrical properties of MoSi2 and/or SiC-containing ZrB2-based composites and the effects of MoSi2 and SiC contents were examined in hot-pressed ZrB2–MoSi2–SiC composites. The thermal conductivity and electrical conductivity of the ZrB2–MoSi2–SiC composites were measured at room temperature by a nanoflash technique and a current–voltage method, respectively. The results indicate that the thermal and electrical conductivities of ZrB2–MoSi2–SiC composites are dependent on the amount of MoSi2 and SiC. The thermal conductivities observed for all of the compositions were more than 75 W·(m·K)−1. A maximum conductivity of 97.55 W·(m·K)−1 was measured for the 20 vol% MoSi2-30 vol% SiC-containing ZrB2 composite. On the other hand, the electrical conductivities observed for all of the compositions were in the range from 4.07 × 10–8.11 × 10 Ω−1·cm−1.  相似文献   

16.
A reaction-bonding process, which offers low sintering shrinkage and is a low-cost process, was applied to fabricate Y–α-SiAlON ceramics. The green compacts composed of Si, Y2O3, Al2O3, and AlN were nitrided and subsequently postsintered. Dense single-phase Y–α-SiAlON with elongated grain morphology could be achieved in the specimen postsintered at 1900°C. The material exhibited high hardness (1850 HV10) and high fracture toughness (5.1 MPa·m1/2).  相似文献   

17.
In Situ Processing and Properties of SiC/MoSi2 Nanocomposites   总被引:4,自引:0,他引:4  
A novel concept for in situ processing of SiC/MoSi2 nanocomposites has been developed that combines the pyrolysis of MoSi2 particles coated with polycarbosilane and subsequent densification by hot pressing. After densification, a uniform dispersion of SiC particles is obtained in the MoSi2 matrix. The strength at both room and elevated temperature is dramatically improved by the processing protocol employed. The average room-temperature flexural strength measured for the SiC/MoSi2 nanocomposite was 760 versus 150 MPa for unreinforced MoSi2. The average 1250°C flexural strength measured for the SiC/MoSi2 nanocomposite was 606 versus 77 MPa for unreinforced MoSi2.  相似文献   

18.
Seeding a mixture of boehmite (AIOOH) and colloidal ZrO2 with α-alumina particles and sintering at 1400°C for 100 min results in 98% density. The low sintering temperature, relative to conventional powder processing, is a result of the small alumina particle size (∼0.3 μm) obtained during the θ-to α-alumina transformation, homogeneous mixing, and the uniform structure of the sol-gel system. Complete retention of pure ZrO2 in the tetragonal phase was obtained to 14 vol% ZTA because of the low-temperature sintering. The critical grain size for tetragonal ZrO2 was determined to be ∼0.4 μm for the 14 vol% ZrO2—Al2O3 composite. From these results it is proposed that seeded boehmite gels offer significant advantages for process control and alumina matrix composite fabrication.  相似文献   

19.
The mechanical behavior of MoSi2 reinforced–Si3N4 matrix composites was investigated as a function of MoSi2 phase content, MoSi2 phase size, and amount of MgO densification aid for the Si3N4 phase. Coarse-phase MoSi2-Si3N4 composites exhibited higher room-temperature fracture toughness than fine-phase composites, reaching values >8 MP·am1/2. Composite fracture toughness levels increased at elevated temperature. Fine-phase composites were stronger and more creep resistant than coarse phase composites. Room-temperature strengths >1000 MPa and impression creep rates of ∼10−8 s−1 at 1200°C were observed. Increased MgO levels generally were deleterious to MoSi2-Si3N4 mechanical properties. Internal stresses due to MoSi2 and Si3N4 thermal expansion coefficient mismatch appeared to contribute to fracture toughening in MoSi2-Si3N4 composites.  相似文献   

20.
Refractory Y-α-SiAlON with elongated grain morphology was obtained by utilizing La2O3 as a densification aid, which resulted in excellent room-temperature and high-temperature strength. Room-temperature strength of 1000 MPa was achieved when La2O3 was augmented by adding Y2O3 or removing AlN. With only La2O3, a temperature-independent strength of 800–950 MPa was maintained up to 1100°C, then gradually decreasing by 25% when reaching 1300°C. The R-curve measurements of fracture toughness showed relatively little dependence on microstructure, consistent with a strong interface that suppresses grain boundary decohesion. Compared with other densification aids such as SiO2, Al2O3, Sc2O3, Y2O3, and Lu2O3, a finer microstructure was obtained by using La2O3. High nitrogen content in the residual La–Si–Al–O–N glass in equilibrium with the nitrogen-rich α-SiAlON is suggested to be the cause of these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号